Biochemical Journal, ISSN 0264-6021, 07/2014, Volume 461, Issue 2, pp. 189 - 203
Malaria parasites must respond to stresses and environmental signals to perpetuate efficiently during their multistage development in diverse environments. To...
Peroxiredoxin | Plasmodium | DJ-1/PfpI | Malaria | Chaperone | Reactive oxygen species (ROS) | peroxiredoxin | OXIDATIVE STRESS | RESOLUTION CRYSTAL-STRUCTURE | BIOCHEMISTRY & MOLECULAR BIOLOGY | reactive oxygen species (ROS) | malaria | MALARIA PARASITES | SACCHAROMYCES-CEREVISIAE | DROSOPHILA DJ-1 MUTANTS | chaperone | ESCHERICHIA-COLI HSP31 | BACTERIAL HOMOLOG | MOLECULAR CHAPERONE | PROKARYOTIC HOMOLOG | INTRACELLULAR PROTEASE PFPI | Plasmodium falciparum - enzymology | Virulence - drug effects | Multigene Family | Rats, Wistar | Humans | Plasmodium berghei - genetics | Molecular Sequence Data | Male | Oocysts - drug effects | Protozoan Proteins - genetics | Artemisinins - pharmacology | Virulence - genetics | Plasmodium berghei - enzymology | Plasmodium falciparum - genetics | Female | Plasmodium berghei - pathogenicity | Amino Acid Sequence | Rats | Oocysts - enzymology | Enzyme Activation - drug effects | Gene Knockout Techniques | Protozoan Proteins - physiology | Animals | Cysteine Endopeptidases - genetics | Plasmodium falciparum - pathogenicity | Mice | Mice, Inbred BALB C | Mutation | Enzyme Activation - genetics
Peroxiredoxin | Plasmodium | DJ-1/PfpI | Malaria | Chaperone | Reactive oxygen species (ROS) | peroxiredoxin | OXIDATIVE STRESS | RESOLUTION CRYSTAL-STRUCTURE | BIOCHEMISTRY & MOLECULAR BIOLOGY | reactive oxygen species (ROS) | malaria | MALARIA PARASITES | SACCHAROMYCES-CEREVISIAE | DROSOPHILA DJ-1 MUTANTS | chaperone | ESCHERICHIA-COLI HSP31 | BACTERIAL HOMOLOG | MOLECULAR CHAPERONE | PROKARYOTIC HOMOLOG | INTRACELLULAR PROTEASE PFPI | Plasmodium falciparum - enzymology | Virulence - drug effects | Multigene Family | Rats, Wistar | Humans | Plasmodium berghei - genetics | Molecular Sequence Data | Male | Oocysts - drug effects | Protozoan Proteins - genetics | Artemisinins - pharmacology | Virulence - genetics | Plasmodium berghei - enzymology | Plasmodium falciparum - genetics | Female | Plasmodium berghei - pathogenicity | Amino Acid Sequence | Rats | Oocysts - enzymology | Enzyme Activation - drug effects | Gene Knockout Techniques | Protozoan Proteins - physiology | Animals | Cysteine Endopeptidases - genetics | Plasmodium falciparum - pathogenicity | Mice | Mice, Inbred BALB C | Mutation | Enzyme Activation - genetics
Journal Article
Molecular Microbiology, ISSN 0950-382X, 08/2019, Volume 112, Issue 2, pp. 699 - 717
Summary The interplay between ATP generating and utilizing pathways in a cell is responsible for maintaining cellular ATP/energy homeostasis that is reflected...
Yeasts | GTP | Yeast | Enzyme activity | AMP deaminase | Energy charge | Homeostasis | Homology | Parasites | Kinases | ADP | Allosteric properties | Enzymatic activity | Complementation | Recombinant | Vector-borne diseases | Enzymes | Malaria | AMP | Adenosine deaminase | Energy balance | Adenylate kinase | ATP | Saccharomyces cerevisiae | Life cycles
Yeasts | GTP | Yeast | Enzyme activity | AMP deaminase | Energy charge | Homeostasis | Homology | Parasites | Kinases | ADP | Allosteric properties | Enzymatic activity | Complementation | Recombinant | Vector-borne diseases | Enzymes | Malaria | AMP | Adenosine deaminase | Energy balance | Adenylate kinase | ATP | Saccharomyces cerevisiae | Life cycles
Journal Article
Nature, ISSN 0028-0836, 12/2006, Volume 444, Issue 7121, pp. 937 - 940
Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they...
PLASMODIUM SPOROZOITES | IMMUNITY | IMMUNIZATION | HEPATOCYTES | TRANSCRIPTOME | MULTIDISCIPLINARY SCIENCES | LIVER-STAGES | INFECTION | VIRULENCE | MALARIA VACCINE | T-CELLS | Immunodominant Epitopes - immunology | T-Lymphocytes, Cytotoxic - immunology | Antigens, Protozoan - immunology | Mice, Inbred C57BL | Sporozoites - radiation effects | Mice, Transgenic | Sporozoites - immunology | Sporozoites - chemistry | Animals | Malaria Vaccines - immunology | Mice | Mice, Inbred BALB C | Protozoan Proteins - immunology | Proteins | Antigens | Immunization | Immunology | Malaria | Transgenic animals | Rodents | Gene expression
PLASMODIUM SPOROZOITES | IMMUNITY | IMMUNIZATION | HEPATOCYTES | TRANSCRIPTOME | MULTIDISCIPLINARY SCIENCES | LIVER-STAGES | INFECTION | VIRULENCE | MALARIA VACCINE | T-CELLS | Immunodominant Epitopes - immunology | T-Lymphocytes, Cytotoxic - immunology | Antigens, Protozoan - immunology | Mice, Inbred C57BL | Sporozoites - radiation effects | Mice, Transgenic | Sporozoites - immunology | Sporozoites - chemistry | Animals | Malaria Vaccines - immunology | Mice | Mice, Inbred BALB C | Protozoan Proteins - immunology | Proteins | Antigens | Immunization | Immunology | Malaria | Transgenic animals | Rodents | Gene expression
Journal Article
PLoS ONE, ISSN 1932-6203, 02/2009, Volume 4, Issue 2, p. e4480
Journal Article
International Journal for Parasitology, ISSN 0020-7519, 04/2017, Volume 47, Issue 5, pp. 239 - 245
aspartic proteases, termed plasmepsins (PMs) play many critical roles such as haemoglobin degradation, cleavage of PEXEL proteins and sporozoite development in...
Gliding motility | Plasmodium | Plasmepsin | Malaria | Oocyst | Invasion | CYSTEINE PROTEASE | PARASITIC PROTOZOA | ASPARTIC PROTEASES | HOST | MOSQUITO | DISRUPTION | FALCIPARUM FOOD VACUOLE | PROTEINS | PARASITOLOGY | Anopheles - parasitology | Plasmodium berghei - physiology | Humans | Aspartic Acid Endopeptidases - genetics | Oocysts - enzymology | Protozoan Proteins - genetics | Salivary Glands - parasitology | Hep G2 Cells | Phenotype | Sporozoites - enzymology | Animals | Movement - physiology | Protozoan Proteins - metabolism | Oocysts - physiology | Aspartic Acid Endopeptidases - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Female | Sporozoites - physiology | Culicidae - parasitology | Mice | Mice, Inbred BALB C | Disease Models, Animal | Proteases | Proteins | Plasmodium falciparum
Gliding motility | Plasmodium | Plasmepsin | Malaria | Oocyst | Invasion | CYSTEINE PROTEASE | PARASITIC PROTOZOA | ASPARTIC PROTEASES | HOST | MOSQUITO | DISRUPTION | FALCIPARUM FOOD VACUOLE | PROTEINS | PARASITOLOGY | Anopheles - parasitology | Plasmodium berghei - physiology | Humans | Aspartic Acid Endopeptidases - genetics | Oocysts - enzymology | Protozoan Proteins - genetics | Salivary Glands - parasitology | Hep G2 Cells | Phenotype | Sporozoites - enzymology | Animals | Movement - physiology | Protozoan Proteins - metabolism | Oocysts - physiology | Aspartic Acid Endopeptidases - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Female | Sporozoites - physiology | Culicidae - parasitology | Mice | Mice, Inbred BALB C | Disease Models, Animal | Proteases | Proteins | Plasmodium falciparum
Journal Article
The Biochemical journal, 07/2014, Volume 461, Issue 2, p. 189
Malaria parasites must respond to stresses and environmental signals to perpetuate efficiently during their multistage development in diverse environments. To...
Adaptation, Physiological | Plasmodium falciparum - enzymology | Reactive Oxygen Species - metabolism | Oxidative Stress | Humans | Plasmodium berghei - genetics | Virulence | Molecular Sequence Data | Plasmodium falciparum - drug effects | Protozoan Proteins - genetics | Artemisinins - pharmacology | Protozoan Proteins - metabolism | Gene Deletion | Plasmodium berghei - enzymology | Plasmodium falciparum - genetics | Escherichia coli - metabolism | Oocysts - growth & development | Female | Plasmodium berghei - pathogenicity | Amino Acid Sequence | Hydrogen Peroxide - pharmacology | Antimalarials - pharmacology | Erythrocytes - drug effects | Sequence Alignment | Animals | Escherichia coli - genetics | Plasmodium falciparum - pathogenicity | Mice | Mice, Inbred BALB C | Erythrocytes - parasitology | Plasmodium berghei - drug effects | Oocysts - metabolism
Adaptation, Physiological | Plasmodium falciparum - enzymology | Reactive Oxygen Species - metabolism | Oxidative Stress | Humans | Plasmodium berghei - genetics | Virulence | Molecular Sequence Data | Plasmodium falciparum - drug effects | Protozoan Proteins - genetics | Artemisinins - pharmacology | Protozoan Proteins - metabolism | Gene Deletion | Plasmodium berghei - enzymology | Plasmodium falciparum - genetics | Escherichia coli - metabolism | Oocysts - growth & development | Female | Plasmodium berghei - pathogenicity | Amino Acid Sequence | Hydrogen Peroxide - pharmacology | Antimalarials - pharmacology | Erythrocytes - drug effects | Sequence Alignment | Animals | Escherichia coli - genetics | Plasmodium falciparum - pathogenicity | Mice | Mice, Inbred BALB C | Erythrocytes - parasitology | Plasmodium berghei - drug effects | Oocysts - metabolism
Journal Article
International Journal for Parasitology, ISSN 0020-7519, 03/2018, Volume 48, Issue 3-4, pp. 203 - 209
In , the shikimate pathway is a potential target for malaria chemotherapy owing to its absence in the mammalian host. Chorismate, the end product of this...
Plasmodium | Shikimate pathway | Chorismate synthase | Malaria | Sporozoites | ACID | FALCIPARUM | STAGE | RETICULOCYTES | MALARIA PARASITES | SYNTHASE | TREE | PARASITOLOGY | Amino Acid Sequence | Anopheles - parasitology | Phosphorus-Oxygen Lyases - genetics | Humans | Mice, Inbred C57BL | Plasmodium berghei - genetics | Mosquito Vectors - parasitology | Phylogeny | Shikimic Acid - metabolism | Gene Knockout Techniques | Hep G2 Cells | Animals | Chorismic Acid - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Plasmodium berghei - growth & development | Female | Mice | Phosphorus-Oxygen Lyases - chemistry | Liver - parasitology | Phosphorus-Oxygen Lyases - metabolism | Index Medicus
Plasmodium | Shikimate pathway | Chorismate synthase | Malaria | Sporozoites | ACID | FALCIPARUM | STAGE | RETICULOCYTES | MALARIA PARASITES | SYNTHASE | TREE | PARASITOLOGY | Amino Acid Sequence | Anopheles - parasitology | Phosphorus-Oxygen Lyases - genetics | Humans | Mice, Inbred C57BL | Plasmodium berghei - genetics | Mosquito Vectors - parasitology | Phylogeny | Shikimic Acid - metabolism | Gene Knockout Techniques | Hep G2 Cells | Animals | Chorismic Acid - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Plasmodium berghei - growth & development | Female | Mice | Phosphorus-Oxygen Lyases - chemistry | Liver - parasitology | Phosphorus-Oxygen Lyases - metabolism | Index Medicus
Journal Article
American Journal of Immunology, ISSN 1553-619X, 2012, Volume 8, Issue 3, pp. 88 - 100
Journal Article
American Journal of Immunology, ISSN 1553-619X, 01/2012, Volume 8, Issue 3, pp. 88 - 88
Malaria remains one of the world's worst health problems, which causes 216 million new cases and approximately 655,000 deaths every year WHO World Malaria...
Journal Article
Scientific Reports, ISSN 2045-2322, 01/2017, Volume 7, Issue 1, p. 40407
Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during...
LIFE-CYCLE | CELLS | LIVER-STAGE DEVELOPMENT | SALIVARY-GLAND SPOROZOITES | MULTIDISCIPLINARY SCIENCES | MALARIA PARASITE | MOSQUITO | GLIDING MOTILITY | INFECTION | BERGHEI | EXPRESSION | Malaria | Transcription | Glands | Gene regulation | Liver | Salivary gland | Gene expression | Cadherin | Membrane proteins | Proteins | DNA microarrays | Developmental stages | Sporozoites | Cell cycle
LIFE-CYCLE | CELLS | LIVER-STAGE DEVELOPMENT | SALIVARY-GLAND SPOROZOITES | MULTIDISCIPLINARY SCIENCES | MALARIA PARASITE | MOSQUITO | GLIDING MOTILITY | INFECTION | BERGHEI | EXPRESSION | Malaria | Transcription | Glands | Gene regulation | Liver | Salivary gland | Gene expression | Cadherin | Membrane proteins | Proteins | DNA microarrays | Developmental stages | Sporozoites | Cell cycle
Journal Article
Cellular Microbiology, ISSN 1462-5814, 07/2017, Volume 19, Issue 7, pp. e12723 - n/a
Summary SUMOylation is a reversible post translational modification of proteins that regulates protein stabilization, nucleocytoplasmic transport, and...
Plasmodium EEFs | Toxoplasma | host SUMOylation | SMAD4 | SUMO1 | conjugation enzyme E2 | LISTERIA-MONOCYTOGENES | SURVIVAL | APOPTOSIS | UBIQUITIN | MICROBIOLOGY | CELL BIOLOGY | LIVER STAGE | PATHWAY | GROWTH | INFECTION | RNA, Small Interfering - genetics | Rabbits | Gene Expression Regulation - genetics | Humans | Mice, Inbred C57BL | Plasmodium berghei - genetics | SUMO-1 Protein - biosynthesis | Ubiquitin-Conjugating Enzymes - genetics | Sumoylation - physiology | Sporozoites - cytology | Smad4 Protein - metabolism | Hep G2 Cells | Plasmodium berghei - cytology | Plasmodium berghei - metabolism | Animals | Toxoplasma - genetics | RNA Interference | Ubiquitin-Conjugating Enzymes - metabolism | Cell Line, Tumor | Plasmodium berghei - growth & development | Mice | Mice, Inbred BALB C | Toxoplasma - metabolism | Proteins | Post-translational modification | Plasmodium falciparum | DNA microarrays | Malaria | Analysis | Genes | Gene expression | Health aspects | Protein-protein interactions | Enzymes | Infections | Parasites | Nuclei | Smad4 protein | SUMO protein | Hepatocytes | Sporozoites | Nuclei (cytology) | Inhibition | Protein transport | Protein interaction
Plasmodium EEFs | Toxoplasma | host SUMOylation | SMAD4 | SUMO1 | conjugation enzyme E2 | LISTERIA-MONOCYTOGENES | SURVIVAL | APOPTOSIS | UBIQUITIN | MICROBIOLOGY | CELL BIOLOGY | LIVER STAGE | PATHWAY | GROWTH | INFECTION | RNA, Small Interfering - genetics | Rabbits | Gene Expression Regulation - genetics | Humans | Mice, Inbred C57BL | Plasmodium berghei - genetics | SUMO-1 Protein - biosynthesis | Ubiquitin-Conjugating Enzymes - genetics | Sumoylation - physiology | Sporozoites - cytology | Smad4 Protein - metabolism | Hep G2 Cells | Plasmodium berghei - cytology | Plasmodium berghei - metabolism | Animals | Toxoplasma - genetics | RNA Interference | Ubiquitin-Conjugating Enzymes - metabolism | Cell Line, Tumor | Plasmodium berghei - growth & development | Mice | Mice, Inbred BALB C | Toxoplasma - metabolism | Proteins | Post-translational modification | Plasmodium falciparum | DNA microarrays | Malaria | Analysis | Genes | Gene expression | Health aspects | Protein-protein interactions | Enzymes | Infections | Parasites | Nuclei | Smad4 protein | SUMO protein | Hepatocytes | Sporozoites | Nuclei (cytology) | Inhibition | Protein transport | Protein interaction
Journal Article
Nature Chemical Biology, ISSN 1552-4450, 2008, Volume 4, Issue 6, pp. 347 - 356
Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum,...
LIFE-CYCLE | COMPLEX | HOST-CELL INVASION | CALCIUM-DEPENDENT PROTEIN-KINASE-1 | BIOCHEMISTRY & MOLECULAR BIOLOGY | APICOMPLEXA | MALARIA PARASITE | TOXOPLASMA-GONDII | GLIDING MOTILITY | IDENTIFICATION | MYOSIN-A | Plasmodium falciparum - enzymology | Protein Kinases - genetics | Molecular Weight | Parasitic Sensitivity Tests | Protozoan Proteins - antagonists & inhibitors | Humans | Male | Tissue Distribution | Adenine - therapeutic use | Life Cycle Stages - drug effects | Recombinant Proteins - antagonists & inhibitors | Adenine - analogs & derivatives | Oligonucleotide Array Sequence Analysis - methods | Malaria - immunology | Cyclohexylamines - chemistry | Models, Molecular | Antimalarials - therapeutic use | Cyclohexylamines - therapeutic use | Gene Expression Regulation, Enzymologic - genetics | Small Molecule Libraries | Malaria - parasitology | Mice | Mice, Inbred BALB C | HeLa Cells | Gene Expression Regulation, Enzymologic - drug effects | Cricetulus | Stereoisomerism | Structure-Activity Relationship | Protozoan Proteins - genetics | Adenine - chemistry | Cyclohexylamines - pharmacology | Molecular Structure | Drug Evaluation, Preclinical | CHO Cells | Cell Line | Movement - drug effects | Cricetinae | Protein Kinases - drug effects | Adenine - pharmacology | Recombinant Proteins - genetics | Enzyme Activation - drug effects | Protozoan Proteins - physiology | Antimalarials - pharmacology | Animals | Protein Kinases - physiology | Antimalarials - chemistry | Cell Proliferation - drug effects | Malaria - drug therapy | Plasmodium falciparum - growth & development | Parasitology | Biochemistry | Calcium | Malaria | Kinases | Gene expression
LIFE-CYCLE | COMPLEX | HOST-CELL INVASION | CALCIUM-DEPENDENT PROTEIN-KINASE-1 | BIOCHEMISTRY & MOLECULAR BIOLOGY | APICOMPLEXA | MALARIA PARASITE | TOXOPLASMA-GONDII | GLIDING MOTILITY | IDENTIFICATION | MYOSIN-A | Plasmodium falciparum - enzymology | Protein Kinases - genetics | Molecular Weight | Parasitic Sensitivity Tests | Protozoan Proteins - antagonists & inhibitors | Humans | Male | Tissue Distribution | Adenine - therapeutic use | Life Cycle Stages - drug effects | Recombinant Proteins - antagonists & inhibitors | Adenine - analogs & derivatives | Oligonucleotide Array Sequence Analysis - methods | Malaria - immunology | Cyclohexylamines - chemistry | Models, Molecular | Antimalarials - therapeutic use | Cyclohexylamines - therapeutic use | Gene Expression Regulation, Enzymologic - genetics | Small Molecule Libraries | Malaria - parasitology | Mice | Mice, Inbred BALB C | HeLa Cells | Gene Expression Regulation, Enzymologic - drug effects | Cricetulus | Stereoisomerism | Structure-Activity Relationship | Protozoan Proteins - genetics | Adenine - chemistry | Cyclohexylamines - pharmacology | Molecular Structure | Drug Evaluation, Preclinical | CHO Cells | Cell Line | Movement - drug effects | Cricetinae | Protein Kinases - drug effects | Adenine - pharmacology | Recombinant Proteins - genetics | Enzyme Activation - drug effects | Protozoan Proteins - physiology | Antimalarials - pharmacology | Animals | Protein Kinases - physiology | Antimalarials - chemistry | Cell Proliferation - drug effects | Malaria - drug therapy | Plasmodium falciparum - growth & development | Parasitology | Biochemistry | Calcium | Malaria | Kinases | Gene expression
Journal Article
Molecular & Biochemical Parasitology, ISSN 0166-6851, 09/2019, Volume 232, p. 111198
sporozoites are infective forms of the parasite to mammalian hepatocytes. Sporozoite surface or secreted proteins likely play an important role in recognition,...
Plasmodium | Exo-erythrocytic forms | Malaria | Sporozoites | ANTIBODIES | MIGRATION | HOST-CELLS | HEPATOCYTES | SURFACE PROTEIN | STAGE | BIOCHEMISTRY & MOLECULAR BIOLOGY | CIRCUMSPOROZOITE PROTEIN | INFECTIVITY | TRANSMISSION | MALARIA PARASITE | PARASITOLOGY
Plasmodium | Exo-erythrocytic forms | Malaria | Sporozoites | ANTIBODIES | MIGRATION | HOST-CELLS | HEPATOCYTES | SURFACE PROTEIN | STAGE | BIOCHEMISTRY & MOLECULAR BIOLOGY | CIRCUMSPOROZOITE PROTEIN | INFECTIVITY | TRANSMISSION | MALARIA PARASITE | PARASITOLOGY
Journal Article
mBio, ISSN 2161-2129, 2016, Volume 7, Issue 3, p. e00682-16
Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes,...
MITOCHONDRIAL CLEARANCE | PHOSPHATIDYLINOSITOL 3-PHOSPHATE | PARASITOPHOROUS VACUOLE | RETICULOCYTE MATURATION | MULTIVESICULAR BODIES | RODENT MALARIA PARASITE | DEPENDENT PROTEIN-KINASE | MICROBIOLOGY | AUTOPHAGOSOME FORMATION | UNCONVENTIONAL SECRETION | FALCIPARUM APICOPLAST | Membrane Proteins - genetics | Merozoites - physiology | Plasmodium berghei - physiology | Acyl Carrier Protein - metabolism | Humans | Plasmodium berghei - genetics | Mice, Transgenic | Autophagy | Organelles | Hepatocytes - parasitology | Plasmodium berghei - cytology | Animals | Protozoan Proteins - metabolism | Malaria - parasitology | Plasmodium berghei - growth & development | Apicoplasts | Membrane Proteins - metabolism | Merozoites - growth & development | Liver - parasitology | Mutation | Autophagy-Related Protein 8 Family - genetics
MITOCHONDRIAL CLEARANCE | PHOSPHATIDYLINOSITOL 3-PHOSPHATE | PARASITOPHOROUS VACUOLE | RETICULOCYTE MATURATION | MULTIVESICULAR BODIES | RODENT MALARIA PARASITE | DEPENDENT PROTEIN-KINASE | MICROBIOLOGY | AUTOPHAGOSOME FORMATION | UNCONVENTIONAL SECRETION | FALCIPARUM APICOPLAST | Membrane Proteins - genetics | Merozoites - physiology | Plasmodium berghei - physiology | Acyl Carrier Protein - metabolism | Humans | Plasmodium berghei - genetics | Mice, Transgenic | Autophagy | Organelles | Hepatocytes - parasitology | Plasmodium berghei - cytology | Animals | Protozoan Proteins - metabolism | Malaria - parasitology | Plasmodium berghei - growth & development | Apicoplasts | Membrane Proteins - metabolism | Merozoites - growth & development | Liver - parasitology | Mutation | Autophagy-Related Protein 8 Family - genetics
Journal Article
Molecular & Biochemical Parasitology, ISSN 0166-6851, 06/2014, Volume 195, Issue 1, pp. 10 - 13
By generating Plasmepsin VII knock out, we show that this gene is not essential for blood, mosquito or liver stages of the life cycle. Plasmepsins (PM),...
Mosquito stages | Aspartic proteases | Plasmodium | Plasmepsins | FALCIPARUM | BIOCHEMISTRY & MOLECULAR BIOLOGY | MOSQUITO | PROTEINS | PROTEASE | PARASITOLOGY | Humans | Plasmodium berghei - genetics | Gene Silencing | Aspartic Acid Endopeptidases - genetics | Protozoan Proteins - genetics | Sporozoites - growth & development | Sporozoites - enzymology | Animals | Protozoan Proteins - metabolism | Aspartic Acid Endopeptidases - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Plasmodium berghei - growth & development | Female | Culicidae - parasitology | Mice | Mice, Inbred BALB C | Genetic engineering | Proteases | Genes | Genetically modified organisms
Mosquito stages | Aspartic proteases | Plasmodium | Plasmepsins | FALCIPARUM | BIOCHEMISTRY & MOLECULAR BIOLOGY | MOSQUITO | PROTEINS | PROTEASE | PARASITOLOGY | Humans | Plasmodium berghei - genetics | Gene Silencing | Aspartic Acid Endopeptidases - genetics | Protozoan Proteins - genetics | Sporozoites - growth & development | Sporozoites - enzymology | Animals | Protozoan Proteins - metabolism | Aspartic Acid Endopeptidases - metabolism | Plasmodium berghei - enzymology | Malaria - parasitology | Plasmodium berghei - growth & development | Female | Culicidae - parasitology | Mice | Mice, Inbred BALB C | Genetic engineering | Proteases | Genes | Genetically modified organisms
Journal Article
PLoS ONE, ISSN 1932-6203, 02/2009, Volume 4, Issue 2, p. e4480
Immunization with radiation attenuated Plasmodium sporozoites (RAS) elicits sterile protective immunity against sporozoite challenge in murine models and in...
MULTIDISCIPLINARY SCIENCES | Plasmodium - radiation effects | Immunization | Antigens, Protozoan - immunology | Protozoan Vaccines - immunology | Humans | Plasmodium - genetics | Sporozoites - radiation effects | Mice, Transgenic | Sporozoites - immunology | Animals | Mice | Mice, Inbred BALB C | Plasmodium - immunology | Animal models | Biomedical research | Liver | Radiation | Lymphocytes T | Genomes | Infections | Vaccines | Parasites | Immunity | Proteins | Immunology | Developmental stages | Lymphocytes | Rodents | Sporozoites | Attenuation | Circumsporozoite protein | Immune system | Antigens | Immunoglobulins | Immune response | Malaria | Cloning | Transgenic mice | Pathology | Mosquitoes | Protective antigen
MULTIDISCIPLINARY SCIENCES | Plasmodium - radiation effects | Immunization | Antigens, Protozoan - immunology | Protozoan Vaccines - immunology | Humans | Plasmodium - genetics | Sporozoites - radiation effects | Mice, Transgenic | Sporozoites - immunology | Animals | Mice | Mice, Inbred BALB C | Plasmodium - immunology | Animal models | Biomedical research | Liver | Radiation | Lymphocytes T | Genomes | Infections | Vaccines | Parasites | Immunity | Proteins | Immunology | Developmental stages | Lymphocytes | Rodents | Sporozoites | Attenuation | Circumsporozoite protein | Immune system | Antigens | Immunoglobulins | Immune response | Malaria | Cloning | Transgenic mice | Pathology | Mosquitoes | Protective antigen
Journal Article