X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (19) 19
mathematics - algebraic topology (18) 18
rational homotopy theory (13) 13
algebra (11) 11
algebraic topology (7) 7
mapping space (7) 7
k-theory and homology (4) 4
mathematics, applied (4) 4
quillen model (4) 4
rational homotopy (4) 4
sullivan model (4) 4
55p62 (3) 3
[formula omitted]-algebra (3) 3
analysis (3) 3
function space (3) 3
homotopy theory (3) 3
sections (3) 3
54c35 (2) 2
algebras (2) 2
category theory (2) 2
homology (2) 2
l-infinity-algebra (2) 2
lie groups (2) 2
lie-algebra (2) 2
l∞ algebra (2) 2
mathematical models (2) 2
mathematics, general (2) 2
maurer-cartan elements (2) 2
nilpotent bundle (2) 2
primary 55p62 (2) 2
rational homotopy-theory (2) 2
secondary 54c35 (2) 2
space of sections (2) 2
spaces (2) 2
topology (2) 2
11b68 (1) 1
17b01 (1) 1
17b55 (1) 1
55p62, 54c35 (1) 1
55u10 (1) 1
55u35 (1) 1
[formula omitted]-algebras (1) 1
a algebra (1) 1
algebraic models of non-connected spaces (1) 1
applications of mathematics (1) 1
bernoulli numbers (1) 1
brackets (1) 1
bundle (1) 1
bundles (1) 1
bundling (1) 1
category (1) 1
classifying space (1) 1
coformality (1) 1
complete differential graded lie algebra (1) 1
components (1) 1
decomposition (1) 1
deligne groupoid (1) 1
dga cylinder (1) 1
dgl cylinder (1) 1
differential equations (1) 1
equivalence (1) 1
euler identity (1) 1
fibrations (1) 1
fibre-homotopy equivalences (1) 1
fixed point set (1) 1
fixed points (1) 1
formulas (1) 1
function-spaces (1) 1
functional analysis (1) 1
functors (1) 1
gauge action (1) 1
general (1) 1
general topology (1) 1
geometry (1) 1
geometry and topology (1) 1
higher massey products (1) 1
higher order whitehead products (1) 1
higher whitehead product (1) 1
homotopy (1) 1
homotopy fixed point set (1) 1
homotopy lie algebra (1) 1
homotopy theory of lie algebras (1) 1
homotopy-theory (1) 1
inclusions (1) 1
isomorphism (1) 1
l (1) 1
l infinity-algebras (1) 1
l ∞ -algebras (1) 1
l_\infty $$ algebra (1) 1
l_\infty $$ l ∞ -algebra (1) 1
l_\infty $$ model of a space (1) 1
l_∞ algebra (1) 1
lawrence-sullivan inerval (1) 1
lawrence–sullivan inerval (1) 1
lawrence–sullivan model (1) 1
lie derivation (1) 1
linear algebra (1) 1
l∞ model of a space (1) 1
manifolds (1) 1
mapping (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


10/2015
Topology and its Appl. 204 (2016) 1-7 In this paper we completely describe the Deligne groupoid of the Lawrence-Sullivan interval as two parallel rational... 
Mathematics - Algebraic Topology
Journal Article
08/2015
Extending the model of the interval, we explicitly define for each $n\ge 0$ a free complete differential graded Lie algebra $\mathfrak{L}_n$ generated by the... 
Mathematics - Algebraic Topology
Journal Article
11/2011
Let p be a fibration of simply connected CW complexes with finite base B and fibre F. Let aut_1(p) denote the identity component of the space of all... 
Mathematics - Algebraic Topology
Journal Article
09/2012
In this paper we describe explicit $L_\infty$ algebras modeling the rational homotopy type of any component of the spaces $\map(X,Y)$ and $\map^*(X,Y)$ of free... 
Mathematics - Algebraic Topology
Journal Article
03/2014
In this paper we prove a family of identities for Bernoulli numbers parameterized by triples of integers $(a,b,c)$ with $a+b+c=n-1$, $n\ge 4$. These identities... 
Journal Article
Annales de l'Institut Fourier, ISSN 0373-0956, 2006, Volume 56, Issue 3, pp. 815 - 838
Via the Bousfield-Gugenheim realization functor, and starting from the Brown-Szczarba model of a function space, we give a functorial framework to describe... 
Rational homotopy theory | Function space | Mapping space | Sullivan model | Math. Classification: 55P62, 54C35 | NILPOTENT BUNDLE | MATHEMATICS | mapping space | SECTIONS | function space | rational homotopy theory
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.