X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (80) 80
mathematics - number theory (30) 30
rank (20) 20
elliptic curves (18) 18
diophantine m-tuples (16) 16
integers (15) 15
11g05 (11) 11
elliptic curve (11) 11
mathematics, general (11) 11
continued fractions (10) 10
number theory (10) 10
diophantine sets (9) 9
torsion group (9) 9
11d09 (8) 8
mathematics, applied (8) 8
polynomials (8) 8
simultaneous pellian equations (7) 7
11r11 (6) 6
algebra (6) 6
diophantus (6) 6
elliptic-curves (6) 6
size (6) 6
14h52 (5) 5
diophantine equations (5) 5
fibonacci numbers (5) 5
matematika- és számítástudományok (5) 5
mathematical theorems (5) 5
numbers (5) 5
points (5) 5
specialization homomorphism (5) 5
természettudományok (5) 5
torsion (5) 5
algebra and number theory (4) 4
construction (4) 4
curves (4) 4
diophantine (4) 4
diophantine triple (4) 4
forms (4) 4
function fields (4) 4
generators (4) 4
injectivity (4) 4
m-tuples (4) 4
quadratic field (4) 4
quintuples (4) 4
simultaneous pell equations (4) 4
11y50 (3) 3
analysis (3) 3
coefficients (3) 3
computer science (3) 3
davenport (3) 3
diophantine equation (3) 3
diophantine m-tuple (3) 3
diophantine triples (3) 3
equations (3) 3
family (3) 3
general mathematics (3) 3
integer polynomials (3) 3
mason's inequality (3) 3
mwrank (3) 3
newton's formula (3) 3
pell equation (3) 3
pell equations (3) 3
quadratic fields (3) 3
symbolic computation (3) 3
thue equations (3) 3
twists (3) 3
3 rational-points (2) 2
algebraic-numbers (2) 2
applications of mathematics (2) 2
approximation (2) 2
arithmetic progression (2) 2
constant polynomials (2) 2
d-triples (2) 2
diophantine m -tuples (2) 2
diophantine quadruples (2) 2
diophantine sextuples (2) 2
dynamical systems (2) 2
euler (2) 2
factorization (2) 2
integer points (2) 2
linear form in logarithms (2) 2
linear polynomials (2) 2
mathematical inequalities (2) 2
mathematical rings (2) 2
mathematics - algebraic geometry (2) 2
order-2 (2) 2
parametric family (2) 2
powers (2) 2
primary 11d09 (2) 2
property of diophantus (2) 2
ramsey theory (2) 2
rational numbers (2) 2
root separation (2) 2
shifted products (2) 2
square values (2) 2
triples (2) 2
11a55 (1) 1
11axx (1) 1
11b25 (1) 1
11b39 (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Notices of the American Mathematical Society, ISSN 0002-9920, 08/2016, Volume 63, Issue 7, pp. 772 - 774
Journal Article
Computing, ISSN 0010-485X, 2018, Volume 85, Issue 1-2, pp. 77 - 83
Wiener's attack is a well-known polynomial-time attack on a RSA cryptosystem with small secret decryption exponent d, which works if d < n(0.25), where n = pq... 
Cryptanalysis | Continued fractions | RSA cryptosystem | COMPUTER SCIENCE, THEORY & METHODS | SECRET EXPONENTS | Studies | Public Key Infrastructure | Cryptography | Information technology
Journal Article
Journal fur die Reine und Angewandte Mathematik, ISSN 0075-4102, 02/2004, Volume 2004, Issue 566, pp. 183 - 214
Journal Article
Indagationes Mathematicae, ISSN 0019-3577, 11/2019, Volume 30, Issue 6, pp. 1079 - 1086
Let n be a nonzero integer. A set of nonzero integers {a1,…,am} such that aiaj+n is a perfect square for all 1≤i Diophantine equations | [formula omitted]-quadruples | Elliptic curves | MATHEMATICS | DIOPHANTINE M-TUPLES | D(n)-quadruples | Integers | Mathematics - Number Theory
Journal Article
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, ISSN 1578-7303, 01/2020, Volume 114, Issue 1
For a nonzero integer n, a set of m distinct nonzero integers {a1,a2,...,am} such that aiaj+n is a perfect square for all 1 <= im, is... 
MATHEMATICS | ELLIPTIC-CURVES | Elliptic curves | Primary 11D09 | Secondary 11G05 | M-TUPLES | INJECTIVITY | TRIPLES | RANK | Diophantine quadruples | Mathematics - Number Theory
Journal Article
Bulletin of the Malaysian Mathematical Sciences Society, ISSN 0126-6705, 9/2019, Volume 42, Issue 5, pp. 2915 - 2926
... Andrej Dujella 1 · Mirela Juki´ c Bokun 2 · Ivan Soldo 2 Received: 5 December 2017 / Revised: 2 May 2018 / Published online: 28 May 2018 © Malaysian Mathematical... 
11D09 | Diophantine equation | Mathematics, general | Mathematics | Applications of Mathematics | 11R11 | Quadratic field | Diophantine triple
Journal Article
The American Mathematical Monthly, ISSN 0002-9890, 12/2017, Volume 124, Issue 10, pp. 930 - 936
While the separation (the minimal nonzero distance) between roots of a polynomial is a classical topic, its absolute counterpart (the minimal nonzero distance... 
Integers | Algebra | Mathematical theorems | Approximation | Discrete mathematics | Polynomials | Mathematical inequalities | Resultants | ARTICLES | Coefficients | College mathematics | MATHEMATICS | INTEGER POLYNOMIALS | Mathematics - Number Theory | Mathematics | Symbolic Computation | Computer Science | Classical Analysis and ODEs
Journal Article
Experimental mathematics, ISSN 1058-6458, 12/2019, pp. 1 - 8
The absolute separation of a polynomial is the minimum nonzero difference between the absolute values of its roots. In the case of polynomials with integer... 
Symbolic Computation | Computer Science
Journal Article
The Rocky Mountain Journal of Mathematics, ISSN 0035-7596, 1/2014, Volume 44, Issue 4, pp. 1145 - 1160
Triangles having rational sides 𝑎, 𝑏, 𝑐 and rational area 𝑄 are called . Associated to each Heron triangle is the quartic The Heron formula states that... 
MATHEMATICS | DIOPHANTINE TRIPLES | RANK | CONSTRUCTION
Journal Article
Journal of Number Theory, ISSN 0022-314X, 12/2019, Volume 205, pp. 340 - 346
A rational Diophantine m-tuple is a set of m nonzero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational... 
Diophantine sextuples | Elliptic curves | MATHEMATICS | Diophantinc sextuples
Journal Article
Glasnik Matematicki, ISSN 0017-095X, 06/2007, Volume 42, Issue 1, pp. 3 - 18
We study the possible structure of the groups of rational points on elliptic curves of the form y2 = (ax+1)(bx+1)(cx+1), where a,b,c are non-zero rationals... 
Rank | Elliptic curves | Torsion group | Diophantine triple | rank, torsion group
Journal Article
LMS Journal of Computation and Mathematics, ISSN 1461-1570, 2014, Volume 17, Issue 1, pp. 282 - 288
Journal Article
Acta Arithmetica, ISSN 0065-1036, 2011, Volume 147, Issue 4, pp. 397 - 402
Acta Arith. 147 (2011), 397-402 We show that for any even positive integer d there exist polynomials x and y with integer coefficients such that deg(x) = 2d,... 
Integer polynomials | Hall's conjecture | MATHEMATICS | integer polynomials | EQUATION
Journal Article
Periodica Mathematica Hungarica, ISSN 0031-5303, 9/2012, Volume 65, Issue 1, pp. 83 - 96
In this paper, given a pair of odd coprime integers δ and ɛ, we study the positive n such that (n 2 + 1)/2 has two divisors d 1 and d 2 summing up to δn + ɛ. 
Mathematics, general | Mathematics | 11D09 | Pell equations
Journal Article
International Mathematics Research Notices, ISSN 1073-7928, 2017, Volume 2017, Issue 2, pp. 490 - 508
A rational Diophantine m-tuple is a set of m non zero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational... 
MATHEMATICS | ELLIPTIC-CURVES | RANK | Mathematics - Number Theory
Journal Article
Journal of Number Theory, ISSN 0022-314X, 03/2018, Volume 184, pp. 330 - 341
For a nonzero integer n, a set of distinct nonzero integers {a1,a2,…,am} such that aiaj+n is a perfect square for all 1≤i Elliptic curves | Diophantine m-tuples | DIOPHANTINE | MATHEMATICS | SIZE
Journal Article
Acta Arithmetica, ISSN 0065-1036, 2014, Volume 162, Issue 4, pp. 393 - 403
Journal Article
10/2014
Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), 105-109 For the elliptic curve $E$ over $\mathbb{Q}(t)$ found by Kihara, with torsion group... 
Journal Article
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, ISSN 1578-7303, 04/2019, Volume 113, Issue 2, pp. 791 - 806
Given a Diophantine triple {c(1)(t), c(2)(t), c(3)(t)}, the elliptic curve over Q(t) induced by this triple, i.e. y(2) = (c(1)(t) x + 1) (c(2)(t) x + 1)... 
MATHEMATICS | Diophantine triples | Rank | Elliptic curves | Torsion group | Mathematics - Number Theory
Journal Article
The Ramanujan Journal, ISSN 1382-4090, 1/2008, Volume 15, Issue 1, pp. 37 - 46
...Ramanujan J (2008) 15: 37–46 DOI 10.1007/s11139-007-9066-0 On the number of Diophantine m -tuples Andrej Dujella Received: 14 April 2004 / Accepted: 14... 
Order of magnitude | Fourier Analysis | 11D09 | Functions of a Complex Variable | 11N56 | Diophantine m -tuples | Field Theory and Polynomials | Mathematics | Number Theory | Combinatorics | 11D45 | Diophantine m-tuples | SHIFTED PRODUCTS | MATHEMATICS | DAVENPORT | POWERS | order of magnitude
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.