X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
americans abroad (1) 1
amine hardened networks (1) 1
anhydrides (1) 1
bisphenol a (1) 1
bisphenol-a (1) 1
chefs (1) 1
chemical industry (1) 1
crosslinking (1) 1
curing (1) 1
curing agents (1) 1
degradation (1) 1
diglycidyl ether (1) 1
drug-release (1) 1
enzymatic degradation (1) 1
epoxidized soybean oil (1) 1
epoxy resins (1) 1
erosion mechanisms (1) 1
esters (1) 1
fourier transforms (1) 1
glass transition temperature (1) 1
image analysis (1) 1
influenza (1) 1
mass spectra (1) 1
mass spectrometry (1) 1
microscopy (1) 1
model (1) 1
molecular-weight (1) 1
monomers (1) 1
optical microscopy (1) 1
organic chemistry (1) 1
phenolic acids (1) 1
photomicrographs (1) 1
polymer degradation (1) 1
polymer science (1) 1
polymers (1) 1
salicylic acid (1) 1
scanning electron microscopy (1) 1
scientific imaging (1) 1
solid state (1) 1
soya bean oil (1) 1
soybeans (1) 1
spectroscopy (1) 1
thermal-degradation (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


1. Full Text Accelerated hydrolytic degradation of ester-containing biobased epoxy resinsElectronic supplementary information (ESI) available: 1H NMR and 13C NMR data obtained from VA (Fig. S1); 13C NMR data obtained from EVA and AVA (Fig. S2); curing of EVA, ESA, E4HBA, ESO and DGEBA with MHHPA (catalyzed by 1-MI) to form an epoxy resin (Schemes S1-S5); DSC and TGA data obtained from the EVA monomer (Fig. S3); TGA data obtained from epoxy resins containing different ESO and DGEBA contents (Fig. S4); Tg as a function of post-curing time for EVA- and ESO-based epoxy resins (Fig. S5); optical microscopy images of epoxy resins before second-stage curing with differing ESO content (wt% ESO is the ESO content relative to the total amount of ESO and DGEBA) (Fig. S6); Fourier transform of optical micrographs for an epoxy resin containing 40 wt% ESO and particle size distributions obtained through image analysis of optical micrographs (Fig. S7); SEM images of ESO-based and DGEBA-based epoxy resins (Fig. S8); closer view of mass spectra obtained from degradation products of an ESO-based epoxy resin (Fig. S9); proposed chemical structures and molecular weight for peaks detected in mass spectrometry (Table S1); discussion of solid-state kinetic models; comparison of different solid-state kinetic models for fitting ESA and 40% ESO-based epoxy resins (Fig. S10 and Table S2) discussion of contracting volume model derivation; FTIR results of EVA and ESO curing reactions (Fig. S11); conversion of epoxy resins quantified through FTIR (Table S3). See DOI: 10.1039/c9py00240e
ISSN 1759-9954, 6/2019, Volume 1, Issue 23, pp. 3217 - 3229
The accelerated hydrolytic degradation of biobased epoxy resins containing ester linkages was investigated. Epoxidized biobased molecules were utilized as... 
Journal Article
2. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins (Electronic supplementary information (ESI) available: 1H NMR and 13C NMR data obtained from VA (Fig. S1); 13C NMR data obtained from EVA and AVA (Fig. S2); curing of EVA, ESA, E4HBA, ESO and DGEBA with MHHPA (catalyzed by 1-MI) to form an epoxy resin (Schemes S1–S5); DSC and TGA data obtained from the EVA monomer (Fig. S3); TGA data obtained from epoxy resins containing different ESO and DGEBA contents (Fig. S4); Tg as a function of post-curing time for EVA- and ESO-based epoxy resins (Fig. S5); optical microscopy images of epoxy resins before second-stage curing with differing ESO content (wt% ESO is the ESO content relative to the total amount of ESO and DGEBA) (Fig. S6); Fourier transform of optical micrographs for an epoxy resin containing 40 wt% ESO and particle size distributions obtained through image analysis of optical micrographs (Fig. S7); SEM images of ESO-based and DGEBA-based epoxy resins (Fig. S8); closer view of mass spectra obtained from degradation products of an ESO-based epoxy resin (Fig. S9); proposed chemical structures and molecular weight for peaks detected in mass spectrometry (Table S1); discussion of solid-state kinetic models; comparison of different solid-state kinetic models for fitting ESA and 40% ESO-based epoxy resins (Fig. S10 and Table S2) discussion of contracting volume model derivation; FTIR results of EVA and ESO curing reactions (Fig. S11); conversion of epoxy resins quantified through FTIR (Table S3). See DOI: 10.1039/c9py00240e)
Polymer Chemistry, ISSN 1759-9954, 01/2019, Volume 10, Issue 23, pp. 3217 - 3229
Journal Article
POLYMER CHEMISTRY, ISSN 1759-9954, 06/2019, Volume 10, Issue 23, pp. 3217 - 3229
The accelerated hydrolytic degradation of biobased epoxy resins containing ester linkages was investigated. Epoxidized biobased molecules were utilized as... 
THERMAL-DEGRADATION | POLYMER SCIENCE | MOLECULAR-WEIGHT | EPOXIDIZED SOYBEAN OIL | BISPHENOL-A | DRUG-RELEASE | AMINE HARDENED NETWORKS | MODEL | DIGLYCIDYL ETHER | ENZYMATIC DEGRADATION | POLYMER DEGRADATION
Journal Article
El Norte, 01/2017
  Nuestro Presidente ofreció que con la renovación energética bajarían los precios de los energéticos, pero vemos que no cumplió, ya que con este infame... 
Influenza | Chefs | Americans abroad
Newspaper Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.