X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
empirical mode decomposition (1) 1
ensemble empirical mode decomposition (1) 1
intrinsic mode function (1) 1
noise-assisted data analysis (1) 1
signal-spectrum-dependent noise (1) 1
time-frequency analysis (1) 1
時頻分析 (1) 1
本質模態函數 (1) 1
經驗模態分解法 (1) 1
總體經驗模態分解法 (1) 1
訊號頻譜相依雜訊 (1) 1
雜訊輔助資料分析 (1) 1
more...
Language Language
對於訊號分析方面,經驗模態分解法是一個很好用的方法,它具有自適應性(Adaptive),並能夠處理非線性(Nonlinear)與非穩定(Nonstationary)的訊號,且能在時域上直接訊號拆解,但它會有模態混雜(Mode mixing)的問題。為了解決此問題,Wu與Huang利用白雜訊(White... 
Time-Frequency Analysis | Empirical Mode Decomposition | Signal-spectrum-dependent noise | 時頻分析 | Ensemble Empirical Mode Decomposition | 雜訊輔助資料分析 | 總體經驗模態分解法 | 訊號頻譜相依雜訊 | 經驗模態分解法 | Intrinsic mode function | Noise-assisted data analysis | 本質模態函數
Dissertation
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.