X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (42) 42
integers (20) 20
polynomials (12) 12
mathematical functions (11) 11
euler sums (10) 10
multiple zeta value (10) 10
multiple zeta values (9) 9
hurwitz zeta function (8) 8
number theory (8) 8
sum formula (8) 8
coefficients (5) 5
harmonic series (5) 5
mathematical cusps (5) 5
mathematics, applied (5) 5
numbers (5) 5
vector spaces (5) 5
mathematical theorems (4) 4
primary (4) 4
secondary (4) 4
sine function (4) 4
algebraic conjugates (3) 3
analytic functions (3) 3
drinfeld integral (3) 3
euler decomposition theorem (3) 3
general (3) 3
maass space (3) 3
mathematical rings (3) 3
mathematics - number theory (3) 3
multiple zeta-star value (3) 3
series convergence (3) 3
weighted sum formula (3) 3
11m06 (2) 2
11m35 (2) 2
33e99 (2) 2
40b05 (2) 2
absolute convergence (2) 2
algebra (2) 2
algebra and number theory (2) 2
arithmetic (2) 2
bernoulli polynomial (2) 2
bernoulli polynomials (2) 2
combinatorial analysis (2) 2
combinatorics (2) 2
counting (2) 2
decomposition (2) 2
duality theorem (2) 2
generating function (2) 2
kronecker limit formula (2) 2
mathematical constants (2) 2
mathematical inequalities (2) 2
mathematical vectors (2) 2
mathematics, general (2) 2
modified bell polynomial (2) 2
pascal (2) 2
permutations (2) 2
real numbers (2) 2
restricted sum formula (2) 2
riemann zeta function (2) 2
series de eisenstein (2) 2
shuffle product (2) 2
sums (2) 2
theorems (2) 2
triple euler sums (2) 2
weight (2) 2
11b68 (1) 1
11e45 (1) 1
11m41 (1) 1
11m99 (1) 1
33b15 (1) 1
40a25 (1) 1
abstract (1) 1
abstract algebra (1) 1
abstract algebra, group theory, sylow's theorems, ring theory, field theory (1) 1
algebra, abstract (1) 1
analysis (1) 1
applied mathematics (1) 1
bernoulli identities (1) 1
cayley algebras (1) 1
cayley numbers (1) 1
cayley-hamilton theorem (1) 1
coeficientes (1) 1
cohomology operations (1) 1
college mathematics (1) 1
computer science (1) 1
congruences and residues (1) 1
congruencia (1) 1
cots (1) 1
cusp forms (1) 1
decreasing functions (1) 1
differential geometry (1) 1
digamma function (1) 1
dimension (1) 1
dirichlet (1) 1
dirichlet characters (1) 1
discriminants (1) 1
drinfel'd integrals (1) 1
drinfeld integrals (1) 1
duality theorems (1) 1
eigenvalues (1) 1
einbettung (1) 1
more...
Library Location Library Location
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


2010, ISBN 9789814271882, xii, 359
Book
International Journal of Number Theory, ISSN 1793-0421, 11/2018, Volume 14, Issue 10, pp. 2617 - 2630
For positive integers m , n , k with m ≥ 2 and ⌈ n / 2 ⌉ ≤ k ≤ n , let E { m } ( m , n , k ) be the sum of multiple zeta values of depth k and weight m n with... 
modified Bell polynomial | generating function | stuffle relation | Multiple zeta value | MATHEMATICS | SERIES | stale relation
Journal Article
1984, ISBN 9780821823057, Volume no. 304., vi, 184
Book
International Journal of Number Theory, ISSN 1793-0421, 10/2017, Volume 13, Issue 9, pp. 2253 - 2264
For a real number β ≠ 0 and positive integers m and n with m ≥ 2 , we evaluate the sum of multiple zeta values ∑ k = 1 n ∑ | α | = n β α 1 β α 2 ⋯ β α k ζ ( m... 
MATHEMATICS | multiple zeta-star value | digamma function | Multiple zeta value | gamma function
Journal Article
International Journal of Number Theory, ISSN 1793-0421, 02/2016, Volume 12, Issue 1, pp. 15 - 25
In this paper, we extend the Euler decomposition theorem to a much more general form of the decomposition of the product of n multiple zeta values of height... 
Multiple zeta value | Euler decomposition theorem | MATHEMATICS | SUM FORMULA
Journal Article
International Journal of Number Theory, ISSN 1793-0421, 08/2013, Volume 9, Issue 5, pp. 1185 - 1198
In this paper, we compute shuffle relations from multiple zeta values of the form ζ({1}m-1, n+1) or sums of multiple zeta values of fixed weight and depth.... 
weighted sum formula | shuffle relation | sum formula | Multiple zeta value | MATHEMATICS | HARMONIC SERIES
Journal Article
Functiones et Approximatio, Commentarii Mathematici, ISSN 0208-6573, 2012, Volume 46, Issue 1, pp. 63 - 77
For positive integers \alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} with \alpha_{r} \geq 2, the multiple zeta value or r-fold Euler sum is defined by... 
Euler sums | Stuffle formulae | Multiple zeta value | Hurwitz zeta function | 33E99 | 11M99 | stuffle formulae | 40B05 | multiple zeta value | 40A25
Journal Article
Journal of Number Theory, ISSN 0022-314X, 05/2015, Volume 150, pp. 1 - 20
The classical Euler decomposition theorem expresses a product of two Riemann zeta values in terms of double Euler sums. Also, the sum formula expresses a... 
Multiple zeta value | Euler decomposition theorem | MATHEMATICS
Journal Article
Journal of number theory, ISSN 0022-314X, 2009, Volume 129, Issue 4, pp. 908 - 921
For positive integers α 1 , α 2 , … , α r with α r ⩾ 2 , the multiple zeta value or r-fold Euler sum is defined as ζ ( α ) : = ζ ( α 1 , α 2 , … , α r ) = ∑ 1... 
Drinfeld integral | Multiple zeta value | Sum formula | MATHEMATICS | HARMONIC SERIES | EULER SUMS | EXPLICIT EVALUATION
Journal Article
by Eie, MK and Liaw, WC and Ong, YL
The Rocky Mountain journal of mathematics, ISSN 0035-7596, 04/2020, Volume 50, Issue 2, pp. 551 - 558
We evaluate the multiple zeta value zeta(1, {2}(n+1)) or its dual zeta({2}(n),( )3). When n is even, along with stuffle relations already available, it is... 
modified Bell polynomial | MATHEMATICS | multiple zeta-star value | multiple zeta value | Bernoulli polynomial
Journal Article
Journal of Number Theory, ISSN 0022-314X, 07/2018, Volume 188, pp. 247 - 262
In this paper, we are going to evaluate a family {Ep(2m,n,k)|p∈Z} of sums of multiple zeta values with even arguments and polynomial weights defined... 
Multiple zeta values | Weighted sum formula | Multiple zeta-star value | MATHEMATICS
Journal Article
Transactions of the American Mathematical Society, ISSN 0002-9947, 03/1996, Volume 348, Issue 3, pp. 1117 - 1136
Generalized Bernoulli polynomials were introduced by Shintani in 1976 in order to express the special values at non-positive integers of Dedekind zeta... 
Integers | Numbers | Series convergence | Analytic functions | Real numbers | Paper | Polynomials | Mathematical functions | Coefficients | Vertices | MATHEMATICS
Journal Article
Journal of Number Theory, ISSN 0022-314X, 2006, Volume 117, Issue 1, pp. 31 - 52
In this paper, we consider two types of extended Euler sums: E p , q ( k ) = ∑ n = 1 ∞ 1 n q ∑ r = 1 kn 1 r p , T p , q ( k ) = ∑ n = 1 ∞ 1 n q ∑ r = 1 ⌊ n / k... 
Zeta function | Euler sum | Bernoulli polynomial | POLYNOMIALS | MATHEMATICS | zeta function | INTEGRAL-REPRESENTATIONS | Computer science
Journal Article
10/2018
In this paper, we investigate the Euler sums $$ G_{n+2}(p,q)=\sum_{1\leq k_1 Mathematics - Number Theory
Journal Article
Journal of Number Theory, ISSN 0022-314X, 08/2017, Volume 177, pp. 479 - 496
For k≤n, let E(m,n,k) be the sum of all multiple zeta values of depth k and weight mn with arguments multiples of m≥2. More precisely,... 
Multiple zeta values | Multiple zeta-star values | MATHEMATICS
Journal Article
Rocky Mountain Journal of Mathematics, ISSN 0035-7596, 2017, Volume 47, Issue 7, pp. 2107 - 2131
In this paper, we build some variations of multiple zeta values and investigate their relations. Among other things, we prove that Sigma(|alpha| = m+r 1 <= k1... 
Restricted sum formula | Duality theorem | Multiple zeta value | Sum formula | MATHEMATICS | restricted sum formula | sum formula | duality theorem
Journal Article
International Journal of Number Theory, ISSN 1793-0421, 06/2008, Volume 4, Issue 3, pp. 437 - 451
The triple Euler sum defined by \[ \begin{array}{rcl} \zeta(p, q, r) & = & \sum\limits_{\ell=3}^{\infty} \frac{1}{\ell^{p}} \sum\limits_{k=2}^{\ell-1}... 
MATHEMATICS | triple Euler sums | Hurwitz zeta function
Journal Article
Journal of Number Theory, ISSN 0022-314X, 07/2016, Volume 164, pp. 208 - 222
The duality theorem and sum formula [8] are undoubtedly the crucial relations among multiple zeta values. They can be expressed as ζ({1}p,q+2)=ζ({1}q,p+2)... 
Multiple zeta values | Drinfel'd integrals | Sum formula | Secondary | Primary | MATHEMATICS
Journal Article
Revista Matematica Iberoamericana, ISSN 0213-2230, 2000, Volume 16, Issue 3, pp. 571 - 596
We shall develop the general theory of Jacobi forms of degree two over Cayley numbers and then construct a family of Jacobi-Eisenstein series which forms the... 
FORMS | MATHEMATICS | MAASS SPACE
Journal Article
Journal of Number Theory, ISSN 0022-314X, 08/2013, Volume 133, Issue 8, pp. 2475 - 2495
The classical Euler decomposition theorem expressed a product of two Riemann zeta values in terms of double Euler sums. Such kind of decomposition theorem are... 
Euler sums | Multiple zeta values | Euler decomposition theorem | Shuffle product formula | Drinfeld integrals | MATHEMATICS | VALUES | SUM FORMULA
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.