X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
assemblages (4) 4
analysis (3) 3
bioassessment (3) 3
classification (3) 3
indicators (3) 3
sequence labeling (3) 3
algorithms (2) 2
biodiversity (2) 2
computer science, artificial intelligence (2) 2
conditional random fields (2) 2
diversity (2) 2
ecology (2) 2
ecosystems (2) 2
environmental sciences (2) 2
running waters (2) 2
species richness (2) 2
streams (2) 2
support vector machines (2) 2
aquatic ecology (1) 1
aquatic ecosystems (1) 1
artificial neural network (1) 1
assemblage structure (1) 1
automation & control systems (1) 1
basin (1) 1
biological assays (1) 1
biological diversity conservation (1) 1
biological metric (1) 1
biotic integrity (1) 1
bryophytes (1) 1
chemistry (1) 1
chironomidae (1) 1
chironomidae larvae (1) 1
classification strength (1) 1
climate-change (1) 1
community (1) 1
community pattern (1) 1
computer science - artificial intelligence (1) 1
computer science, information systems (1) 1
computer science, software engineering (1) 1
confidence-based learning (1) 1
context (1) 1
cross-taxon congruence (1) 1
diptera (1) 1
ecoregions (1) 1
ecosystem components (1) 1
electronic computers. computer science (1) 1
environmental aspects (1) 1
expectation semiring (1) 1
fishes (1) 1
forward-backward algorithm (1) 1
forward–backward algorithm (1) 1
freshwater & marine ecology (1) 1
gradient computation (1) 1
graphical models (1) 1
hidden markov models (1) 1
hinges (1) 1
impoundment impact (1) 1
index (1) 1
index medicus (1) 1
indval (1) 1
insects (1) 1
k-best approach (1) 1
labeling (1) 1
landscape classification (1) 1
landscape classifications (1) 1
large rivers (1) 1
learning (1) 1
life sciences (1) 1
limnology (1) 1
lotic systems (1) 1
machine learning (1) 1
macroinvertebrate communities (1) 1
marine & freshwater biology (1) 1
marking (1) 1
mathematical analysis (1) 1
mathematics (1) 1
mathematics, applied (1) 1
max-margin training (1) 1
message passing (1) 1
methods (1) 1
multiple stressors (1) 1
neural networks (1) 1
neural-network models (1) 1
occupational health and safety (1) 1
optimization (1) 1
patterns (1) 1
predictive models (1) 1
river (1) 1
river basins (1) 1
rivers (1) 1
self-organizing map (1) 1
self-organizing map method (1) 1
som method (1) 1
spatial scale (1) 1
stream (1) 1
structural learning (1) 1
structured classification (1) 1
structured learning (1) 1
sub-gradient methods (1) 1
support vector machine (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


International Journal of Applied Mathematics and Computer Science, ISSN 1641-876X, 12/2014, Volume 24, Issue 4, pp. 917 - 930
... WITH THE AVERAGED SUM LOSS DEJAN MANEV, BRANIMIR TODOROVI Faculty of Sciences and MathematicsUniversity of Ni, Viegradska 33, Ni, Serbiae-mail: http://dejan.mancev@pmf.edu.rs... 
structured classification | sub-gradient methods | support vector machines | sequence labeling | MATHEMATICS, APPLIED | AUTOMATION & CONTROL SYSTEMS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Learning | Support vector machines | Hinges | Algorithms | Mathematical analysis | Classification | Marking | Optimization
Journal Article
Computer Science and Information Systems, ISSN 1820-0214, 07/2015, Volume 12, Issue 2, pp. 465 - 486
Structured learning algorithms usually require inference during the training procedure. Due to their exponential size of output space, the parameter update is... 
Sequence labeling | K-best approach | Structured learning | Max-margin training | COMPUTER SCIENCE, SOFTWARE ENGINEERING | sequence labeling | k-best approach | COMPUTER SCIENCE, INFORMATION SYSTEMS | CLASSIFICATION | structured learning | max-margin training
Journal Article
Pattern Recognition Letters, ISSN 0167-8655, 10/2012, Volume 33, Issue 13, pp. 1776 - 1784
► The memory complexity of the EMP algorithm does not depend on the sequence length. ► The EMP computational complexity is the same as the standard algorithm.... 
Graphical models | Conditional random fields | Message passing | Expectation semiring | Gradient computation | Forward–backward algorithm | Forward-backward algorithm | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Occupational health and safety | Models | Algorithms | Universities and colleges | Analysis
Journal Article
Science of the Total Environment, ISSN 0048-9697, 03/2018, Volume 616-617, pp. 472 - 479
The chironomid community in non-wadeable lotic systems was tested as a source of information in the construction of biological metrics which could be used into... 
Chironomidae | Large rivers | Artificial neural network | Bioassessment | Biological metric | USA | UPPER MISSISSIPPI | MACROINVERTEBRATE COMMUNITIES | ASSEMBLAGES | CLIMATE-CHANGE | NEURAL-NETWORK MODELS | MULTIPLE STRESSORS | ENVIRONMENTAL SCIENCES | AQUATIC ECOSYSTEMS | CHEMISTRY | WATER-QUALITY | Ecosystem components | Indicators (Biology) | Rivers | Neural networks | Analysis
Journal Article
Ecological Indicators, ISSN 1470-160X, 12/2017, Volume 83, pp. 474 - 481
•Community concordance is affected by data variability.•The Chironomidae family reinforces congruence with the fish community.•High taxonomic resolution and... 
Bioassessment | Lotic systems | SOM method | Community | BIODIVERSITY | CROSS-TAXON CONGRUENCE | ASSEMBLAGES | PATTERNS | RUNNING WATERS | SPATIAL SCALE | ENVIRONMENTAL SCIENCES | STREAMS | BRYOPHYTES | SPECIES RICHNESS | DIVERSITY | Environmental aspects | Ecosystems | Fishes | Indicators (Biology) | Biological diversity conservation | Analysis | Methods
Journal Article
Ecological Modelling, ISSN 0304-3800, 01/2013, Volume 248, pp. 20 - 29
► We visualized fish community distribution pattern using the SOM method. ► Fish assemblage types derived by SOM correspond to a priori landscape... 
Assemblage structure | Landscape classification | Classification strength | IndVal | BIODIVERSITY | ASSEMBLAGES | STREAM | LANDSCAPE CLASSIFICATIONS | BIOTIC INTEGRITY | ECOREGIONS | SPECIES RICHNESS | BASIN | ECOLOGY | DIVERSITY | INDEX
Journal Article
11th Symposium on Neural Network Applications in Electrical Engineering, 09/2012, pp. 167 - 170
The paper presents the use of a two structural model committee, where the output of the first model together with its confidence is set as the input of the... 
Support vector machines | Training | Context | structural learning | conditional random fields | support vector machine | sequence labeling | Hidden Markov models | Machine learning | Predictive models | confidence-based learning | Labeling
Conference Proceeding
11/2010
The paper proposes a numerically stable recursive algorithm for the exact computation of the linear-chain conditional random field gradient. It operates as a... 
Computer Science - Artificial Intelligence
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.