X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
crystallography (608) 608
a1. heat transfer (346) 346
a1. computer simulation (345) 345
computer simulation (341) 341
heat transfer (317) 317
materials science, multidisciplinary (280) 280
physics, applied (278) 278
analysis (188) 188
convection (176) 176
wärmeübertragung (149) 149
growth (138) 138
a1. convection (132) 132
a2. czochralski method (132) 132
silicon (126) 126
czochralski method (124) 124
a1. fluid flows (102) 102
fluid flows (100) 100
a1. mass transfer (96) 96
mass transfer (93) 93
semiconducting silicon (93) 93
b2. semiconducting silicon (92) 92
heat-transfer (87) 87
simulation (86) 86
a2. growth from melt (85) 85
computer-generated environments (80) 80
crystal growth (78) 78
crystals (78) 78
rechnerunterstützte simulation (76) 76
models (75) 75
growth from melt (74) 74
crystal-growth (73) 73
mathematical models (70) 70
directional solidification (69) 69
flow (68) 68
kristallwachstum (68) 68
melt (68) 68
index medicus (67) 67
solidification (67) 67
a1. directional solidification (62) 62
magnetic fields (62) 62
segregation (59) 59
single-crystals (59) 59
a1. interfaces (57) 57
a2. single crystal growth (56) 56
halbleiterwachstum (56) 56
silicium (55) 55
interfaces (54) 54
kristallwachstum aus der schmelze (54) 54
numerische simulation (52) 52
single crystal growth (52) 52
a1. growth models (51) 51
a2. bridgman technique (51) 51
growth models (51) 51
model (50) 50
a1. magnetic fields (49) 49
bridgman technique (49) 49
humans (48) 48
a1. segregation (46) 46
melts (46) 46
a2. floating zone technique (45) 45
radiation (43) 43
stoffübergang (43) 43
interface (40) 40
oxides (40) 40
transport (40) 40
a2. growth from vapor (39) 39
b1. oxides (39) 39
floating zone technique (39) 39
konvektion (39) 39
temperaturverteilung (38) 38
interface shape (37) 37
methods (37) 37
diffusion (36) 36
growth from vapor (36) 36
proteins (36) 36
solar cells (36) 36
a1. solidification (35) 35
animals (34) 34
a1. radiation (33) 33
a2. microgravity conditions (33) 33
elementhalbleiter (33) 33
furnaces (33) 33
impurities (33) 33
silicon carbide (33) 33
temperaturgradient (33) 33
tiegel (33) 33
b3. solar cells (32) 32
microgravity conditions (32) 32
numerical analysis (31) 31
numerical-simulation (31) 31
czochralski-verfahren (30) 30
fluide strömung (30) 30
monokristall (29) 29
shape (29) 29
gerichtete erstarrung (28) 28
research (28) 28
research article (28) 28
vertical bridgman growth (28) 28
a1. impurities (27) 27
microgravity (27) 27
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Crystal Growth, ISSN 0022-0248, 01/2014, Volume 385, pp. 9 - 15
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 06/2017, Volume 468, pp. 909 - 913
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 02/2018, Volume 484, pp. 70 - 77
In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the... 
A1. Computer simulation | A1. Directional solidification | B3. Solar cells | B2. Semiconducting silicon | Solar cells | DESIGN | PHYSICS, APPLIED | Computer simulation | Directional solidification | MATERIALS SCIENCE, MULTIDISCIPLINARY | CRYSTALLOGRAPHY | INSULATION PARTITION | MELT FLOW | GROWTH | CRYSTALS | Semiconducting silicon | STRESS | SI INGOTS | INTERFACE SHAPE
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 10/2014, Volume 404, pp. 130 - 135
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 03/2011, Volume 318, Issue 1, pp. 298 - 303
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2006, Volume 290, Issue 2, pp. 642 - 652
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2009, Volume 311, Issue 15, pp. 3933 - 3937
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2011, Volume 317, Issue 1, pp. 23 - 27
The temperature distribution and solid–liquid interface shape during benzil growth have been studied both experimentally and numerically. The heat transfer... 
B1. Organic materials | A1. Crystal growth | A1. Heat transfer | B2. Benzil | C1. Numerical modelling | Crystal growth | Benzil | FURNACE | Organic materials | CRYSTAL-GROWTH | CRYSTALLOGRAPHY | Numerical modelling | Heat transfer | Approximation | Mathematical analysis | Crystallization | Boundary conditions | Mathematical models | Models
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 12/2012, Volume 360, Issue 1, pp. 111 - 118
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2004, Volume 266, Issue 1, pp. 20 - 27
We present an updated version of the combined 2D/3D model of heat transfer and turbulent melt convection for industrial Czochralski (CZ) crystal growth. The 3D... 
A1. Heat transfer | A1. Turbulent convection | B2. Silicon | A1. Computer simulation | A2. Czochralski method | TRANSPORT | silicon | turbulent convection | CONVECTION | FIELD | computer simulation | Czochralski method | TURBULENCE | CRYSTALLOGRAPHY | heat transfer | FLOW | SI GROWTH
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2002, Volume 235, Issue 1, pp. 258 - 270
A global analysis of heat transfer was carried out to investigate the effect of internal radiative heat transfer in the crystal and/or melt on the interface... 
A1. Heat transfer | A1. Computer simulation | B1. Oxides | A1. Interface inversion | A2. Czochralski method | SINGLE-CRYSTAL | oxides | MELT | GALLIUM GARNET | computer simulation | Czochralski method | CRYSTALLOGRAPHY | heat transfer | ATMOSPHERE | FLOW | interface inversion
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.