X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
crystallography (848) 848
a2. bridgman technique (538) 538
materials science, multidisciplinary (482) 482
physics, applied (477) 477
bridgman technique (394) 394
a2. growth from melt (231) 231
a2. single crystal growth (193) 193
growth from melt (182) 182
growth (180) 180
crystal growth (173) 173
single crystal growth (151) 151
crystals (143) 143
segregation (138) 138
analysis (137) 137
a1. directional solidification (136) 136
a1. computer simulation (132) 132
directional solidification (130) 130
computer simulation (128) 128
a1. segregation (126) 126
a1. characterization (121) 121
convection (121) 121
monokristall (108) 108
kristallwachstum (104) 104
single-crystals (102) 102
bridgman method (99) 99
semiconducting ii-vi materials (93) 93
a1. defects (92) 92
kristallwachstum aus der schmelze (92) 92
alloys (91) 91
characterization (89) 89
defects (88) 88
a1. convection (81) 81
b2. semiconducting ii–vi materials (80) 80
b2. semiconducting ii-vi materials (76) 76
crystal-growth (76) 76
b2. scintillator materials (74) 74
melt (74) 74
solidification (73) 73
silicon (71) 71
b1. halides (69) 69
a1. heat transfer (68) 68
methods (68) 68
a2. czochralski method (66) 66
cdte (65) 65
heat transfer (63) 63
a1. doping (59) 59
a1. x-ray diffraction (59) 59
b1. oxides (58) 58
halbleiterwachstum (56) 56
b2. nonlinear optic materials (55) 55
gerichtete erstarrung (55) 55
melts (54) 54
bridgman growth (53) 53
czochralski method (53) 53
magnetic fields (52) 52
scintillator materials (52) 52
x-ray diffraction (52) 52
halides (49) 49
oxides (49) 49
b2. piezoelectric materials (48) 48
doping (47) 47
single crystals (45) 45
impurities (44) 44
a1. crystal structure (43) 43
detectors (43) 43
a1. impurities (42) 42
mathematical models (42) 42
b1. alloys (41) 41
system (41) 41
b1. cadmium compounds (40) 40
b2. semiconducting iii–v materials (40) 40
crystal structure (40) 40
b1. perovskites (39) 39
b2. semiconducting ternary compounds (39) 39
cadmium compounds (39) 39
nonlinear optic materials (39) 39
microgravity (38) 38
b2. semiconducting iii-v materials (37) 37
microgravity conditions (37) 37
semiconducting iii-v materials (37) 37
a2. growth from solutions (36) 36
b2. ferroelectric materials (36) 36
röntgenbeugung (36) 36
interface (35) 35
a1. crystal morphology (34) 34
a1. interfaces (34) 34
cadmium zinc telluride (34) 34
cdznte (34) 34
vertical bridgman growth (34) 34
a2. microgravity conditions (33) 33
szintillator (33) 33
tiegel (33) 33
a1. magnetic fields (31) 31
a2. bridgman method (31) 31
zwei-sechs-verbindung (31) 31
a2. gradient freeze technique (30) 30
crucibles (30) 30
growth from solutions (29) 29
interfaces (29) 29
photolumineszenz (29) 29
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Crystal Growth, ISSN 0022-0248, 08/2016, Volume 447, pp. 36 - 41
A new approach to β-Ga O single crystal growth was studied, using the vertical Bridgman (VB) method in ambient air, while measuring the β-Ga O melting... 
A2. Bridgman technique | B1. Oxides | B2. Semiconducting gallium compounds | A2. Growth from melt | A2. Single crystal growth | SYSTEM | Bridgman technique | PHYSICS, APPLIED | CONDUCTIVITY | Semiconducting gallium compounds | MATERIALS SCIENCE, MULTIDISCIPLINARY | Single crystal growth | Oxides | CRYSTALLOGRAPHY | Growth from melt | EDGE | POWER DEVICES
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 06/2014, Volume 395, pp. 80 - 89
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 01/2013, Volume 362, Issue 1, pp. 121 - 124
BGSO polycrystalline powder was synthesized as starting material by sintering of 4 N Ge O , SiO and Bi O using solid state reaction method. Using 〈0 1... 
A2. Crystal growth | B1. Bi4(GexSi1−x)3O12 crystal | B2. The Bridgman method | crystal | Ge | B1. Bi | Crystal growth | Mixed crystals | Seeds | Crystals | Spectra | Lattice parameters | Transmittance | Bridgman method
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 09/2013, Volume 379, pp. 69 - 72
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2013, Volume 379, pp. 69 - 72
Large diameter Bridgman growth of europium activated strontium iodide SrI :Eu produces crystals with light yield of up to 115,000 ph/MeV with an excellent... 
A2. Bridgman technique | B2. Scintillator material | A2. Growth from melt | A2. Single crystal growth | B2. Large diameter scintillator crystals
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 12/2017, Volume 480, pp. 96 - 101
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 10/2018, Volume 500, pp. 80 - 84
Using the polycrystalline material synthesized via solid-state reaction, Li MoO single crystals were grown by vertical Bridgman method. The crystal defects,... 
A2. Crystal growth | B1. Lithium molybdate | A1. Crystal defects | A1. Crystal morphology | Crystal growth | Crystal defects | PHYSICS, APPLIED | SEARCH | MATERIALS SCIENCE, MULTIDISCIPLINARY | Lithium molybdate | CRYSTALLOGRAPHY | SINGLE-CRYSTALS | LUMINESCENCE | MO-100 | Crystal morphology | DOUBLE-BETA DECAY | BOLOMETER
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 06/2017, Volume 468, pp. 331 - 334
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 02/2020, Volume 531, p. 125364
Pb(Mg Nb )O -PbTiO (PMN-PT) and Pb(In Nb )O -Pb(Mg Nb )O -PbTiO (PIN-PMN-PT) single crystals are superior piezoelectric materials. The single crystal boules... 
A2. Bridgman technique | B1. Perovskites | A1. Segregation | A2. Single crystal growth | B2. Piezoelectric materials | Bridgman technique | PHYSICS, APPLIED | Piezoelectric materials | Segregation | MATERIALS SCIENCE, MULTIDISCIPLINARY | Single crystal growth | Perovskites | CRYSTALLOGRAPHY
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 09/2014, Volume 401, pp. 150 - 155
A mid-infrared LiInSe (LISe) single crystal was successfully grown by the modified vertical Bridgman technique with dimensions of about ∅12 mm×30 mm. A large... 
A2. Bridgman technique | A1. Optical properties | A1. Thermal Properties | B1. LiInSe | A2. Crystal growth | A1. Mid-infrared | Crystal
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 2010, Volume 312, Issue 21, pp. 3136 - 3142
LuAG:Ce single crystals with various activator concentrations were grown by the vertical Bridgman technique. Characterization of crystals was done in terms of... 
A2. Bridgman technique | B1. Rare-earth compounds | B2. Scintillator materials | A1. Defects | Bridgman technique | SINGLE-CRYSTALS | Scintillator materials | MELT GROWTH | Rare-earth compounds | REGIONS | CRYSTALLOGRAPHY | OXIDES | GARNET CRYSTALS | Defects | FACET | Crystal growth | Occupation | Crystal defects | Crystal lattices | Aluminum | Crystals | Lattice sites | Bridgman method
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 04/2015, Volume 416, pp. 100 - 105
The vertical Bridgman (VB) method was investigated as a way to grow Al O /YAG:Ce melt growth composite (Ce-doped MGC), an attractive candidate material for... 
A2. Bridgman technique | Emitting diodes | A1. Eutectics | B3. Light | B1. Oxides | A1. Directional solidification | THERMAL-STABILITY | Bridgman technique | PHYSICS, APPLIED | Directional solidification | Eutectics | Light | HIGH-TEMPERATURE STRENGTH | MATERIALS SCIENCE, MULTIDISCIPLINARY | Oxides | CRYSTALLOGRAPHY | EUTECTIC COMPOSITE
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 02/2020, Volume 531, p. 125340
The effect of a submerged heater on the Bridgman crystal growth process under travelling magnetic field is studied. It is known that the magnetic field... 
A2. Bridgman technique | A1. Heat transfer | A1. Magnetic fields | A1. Computer simulation | ROTATION | Bridgman technique | PHYSICS, APPLIED | Computer simulation | FLUID-FLOW | MELT | CONVECTION | MATERIALS SCIENCE, MULTIDISCIPLINARY | CRYSTALLOGRAPHY | SEGREGATION | MASS-TRANSFER | Magnetic fields | Heat transfer
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 11/2019, Volume 526, p. 125221
We present numerical results of a study on the influence of a submerged rotating baffle on the control of the crystal-melt interface shape in vertical Bridgman... 
A2. Bridgman technique | B1. Cadmium compounds | B1. Sapphire | A1. Stirring | A1. Computer simulation | Bridgman technique | PHYSICS, APPLIED | Computer simulation | Sapphire | CRYSTAL-GROWTH | CONVECTION | MATERIALS SCIENCE, MULTIDISCIPLINARY | Stirring | CONFIGURATION | CRYSTALLOGRAPHY | Cadmium compounds
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 02/2017, Volume 460, pp. 112 - 116
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 05/2019, Volume 513, pp. 43 - 47
Journal Article
Journal of Crystal Growth, ISSN 0022-0248, 09/2018, Volume 498, pp. 56 - 61
CaMoO crystal is a promising scintillator for investigating the neutrinoless double beta decay process and is commonly grown by the Czochralski method. In this... 
A2. Bridgman technique | B1. Molybdates | A1. Oxygen vacancies | A1. Light output | B2. Scintillator materials
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.