# Articles

## Search Articles

### Databases

X
Search Filters
Format
Subjects
Subjects
X
Sort by
Filter by Count
mathematics (5) 5
mathematics, applied (3) 3
arithmetic-geometric-harmonic mean inequality (2) 2
inequalities (2) 2
kantorovich constant (2) 2
operators (2) 2
arithmetic-geometric-harmonic (1) 1
arithmetic-geometric-harmonic mean (1) 1
arithmetic-geometric-harmonic mean inequalities (1) 1
arithmetic-geometric-harmonic means inequalities (1) 1
arithmetic-geometric-harmonic operator mean (1) 1
arithmetic–geometric–harmonic mean (1) 1
combinatorics (1) 1
decreasing function (1) 1
entropy (1) 1
generalized heronian means (1) 1
geometric mean (1) 1
geometric mean inequality (1) 1
geometric operator mean (1) 1
heronian means (1) 1
inductive mean (1) 1
inequality (1) 1
jensen's inequality (1) 1
lie-trotter formula (1) 1
mean codeword length (1) 1
norms (1) 1
operator inequality (1) 1
operator means (1) 1
positive linear maps (1) 1
positive operator (1) 1
probability distribution (1) 1
scalars (1) 1
schur-convexity (1) 1
schur-geometric-convexity (1) 1
schur-harmonic-convexity (1) 1
schurharmonic-convexity (1) 1
sector matrix (1) 1
specht ratio (1) 1
spectral geometric mean (1) 1
values (1) 1
young inequality (1) 1
young-type inequalities (1) 1
more...
Language
Publication Date
Click on a bar to filter by decade
Slide to change publication date range

Journal of Mathematical Inequalities, ISSN 1846-579X, 2011, Volume 5, Issue 4, pp. 551 - 556
The Specht ratio S(h) is the optimal constant in the reverse of the arithmetic-geometric mean inequality, i.e., if 0 < m <= a, b <= M and h = M/m, then (1 - mu)a + mu b <= S(h)a(1-mu) b(mu...
Operator inequality | Specht ratio | Operator means | Kantorovich constant | Young inequality | Arithmetic-geometric-harmonic mean inequality | MATHEMATICS | MATHEMATICS, APPLIED | operator inequality | operator means | arithmetic-geometric-harmonic mean inequality
Journal Article
Journal of inequalities and applications, ISSN 1029-242X, 2019, Volume 2019, Issue 1, pp. 1 - 12
In this paper, we present some new reverse arithmetic-geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187-194, 2013...
MATHEMATICS | Arithmetic-geometric-harmonic mean | MATHEMATICS, APPLIED | Sector matrix | Positive linear maps | Inequality | Operators (mathematics) | Inequalities | Arithmetic–geometric–harmonic mean
Journal Article
by Ren, YH
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, ISSN 1578-7303, 06/2020, Volume 114, Issue 3
In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al...
Arithmetic-geometric-harmonic | MATHEMATICS | Kantorovich constant | Young-type inequalities | GEOMETRIC MEAN INEQUALITY | Operators (mathematics) | Norms | Scalars | Inequalities
Journal Article
Taiwanese journal of mathematics, ISSN 1027-5487, 12/2011, Volume 15, Issue 6, pp. 2721 - 2731
... means, Schur-convexity, Schur-harmonic-convexity, Arithmetic-geometric-harmonic means inequalities, Schur-geometric-convexity.
Generalized heronian means | Arithmetic-geometric-harmonic means inequalities | Heronian means | Schur-convexity | Schur-geometric-convexity | Schurharmonic-convexity | MATHEMATICS | Schur-harmonic-convexity | Generalized Heronian means | VALUES
Journal Article
Linear Algebra and Its Applications, ISSN 0024-3795, 10/2017, Volume 531, pp. 268 - 280
.... We show that the weighted means satisfying the arithmetic-geometric-harmonic mean inequalities are the multivariate Lie-Trotter means...
Arithmetic-geometric-harmonic mean inequalities | Lie-Trotter formula | Inductive mean | Geometric mean | Spectral geometric mean | MATHEMATICS | MATHEMATICS, APPLIED
Journal Article
International Journal of Pure and Applied Mathematics, ISSN 1311-8080, 2013, Volume 89, Issue 5, pp. 719 - 730
Journal Article
Journal of Inequalities in Pure and Applied Mathematics, 2009, Volume 10, Issue 4
Journal Article