X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
c-partite tournaments (6) 6
multipartite tournaments (5) 5
mathematics (4) 4
c-greater-than-or-equal-to-5 (3) 3
complementary cycles (3) 3
graphs (3) 3
almost regular multipartite tournaments (2) 2
cycles (2) 2
discrete mathematics and combinatorics (2) 2
graph theory (2) 2
mathematical analysis (2) 2
paths (2) 2
theoretical computer science (2) 2
algorithms (1) 1
article subject (1) 1
computational theory and mathematics (1) 1
computer science, information systems (1) 1
data processing (1) 1
digraphs (1) 1
engineering, multidisciplinary (1) 1
engineering. civil engineering (1) 1
graph algorithms (1) 1
irregularities (1) 1
locally semicomplete digraphs (1) 1
mathematics, applied (1) 1
mathematics, interdisciplinary applications (1) 1
orientation (1) 1
oriented graphs (1) 1
out-arcs (1) 1
pancyclicity (1) 1
regular multipartite tournaments (1) 1
regularity (1) 1
science (1) 1
theorems (1) 1
tournaments & championships (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Mathematical Problems in Engineering, ISSN 1024-123X, 2016, Volume 2016, pp. 1 - 7
A tournament is a directed graph obtained by assigning a direction for each edge in an undirected complete graph. A digraph.. is cycle complementary if there... 
C-PARTITE TOURNAMENTS | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | ENGINEERING, MULTIDISCIPLINARY | Science | Tournaments & championships | Mathematical analysis | Graphs | Graph theory
Journal Article
Ars Combinatoria, ISSN 0381-7032, 2014, Volume 113, pp. 201 - 224
A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A digraph D is cycle complementary if there exist two vertex-disjoint... 
Multipartite tournaments | Almost regular multipartite tournaments | Complementary cycles | MATHEMATICS | LOCALLY SEMICOMPLETE DIGRAPHS | multipartite tournaments | complementary cycles | C-PARTITE TOURNAMENTS | almost regular multipartite tournaments
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 09/2013, Volume 161, Issue 13-14, pp. 2169 - 2177
Let D be a digraph with vertex set V(D) and independence number α(D). If x∈V(D), then the numbers d+(x) and d−(x) are the outdegree and indegree of x,... 
Multipartite tournaments | Almost regular multipartite tournaments | Complementary cycles | MATHEMATICS, APPLIED | C-PARTITE TOURNAMENTS | Graphs | Theorems | Graph theory | Irregularities | Orientation | Mathematical analysis
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2009, Volume 309, Issue 10, pp. 3131 - 3149
The vertex set of a digraph D is denoted by V ( D ) . A c -partite tournament is an orientation of a complete c -partite graph. In 1999, Yeo conjectured that... 
Multipartite tournaments | Regular multipartite tournaments | Complementary cycles | C-GREATER-THAN-OR-EQUAL-TO-5 | MATHEMATICS | C-PARTITE TOURNAMENTS
Journal Article
Journal of Combinatorial Theory, Series B, ISSN 0095-8956, 2007, Volume 97, Issue 6, pp. 949 - 963
The global irregularity of a digraph D is defined by i g ( D ) = max { d + ( x ) , d − ( x ) } − min { d + ( y ) , d − ( y ) } over all vertices x and y of D... 
Cycles | Multipartite tournaments | Paths | Regularity | C-GREATER-THAN-OR-EQUAL-TO-5 | MATHEMATICS | multipartite tournaments | C-PARTITE TOURNAMENTS | paths | cycles | regularity
Journal Article
Information Processing Letters, ISSN 0020-0190, 10/2012, Volume 112, Issue 20, pp. 759 - 761
Let D be an oriented graph with n⩾9 vertices and minimum degree at least n−2, such that, for any two vertices x and y, either x dominates y or... 
Out-arcs | Cycles | Pancyclicity | Graph algorithms | Oriented graphs | C-GREATER-THAN-OR-EQUAL-TO-5 | C-PARTITE TOURNAMENTS | PATHS | COMPUTER SCIENCE, INFORMATION SYSTEMS | MULTIPARTITE TOURNAMENTS | DIGRAPHS | Algorithms | Data processing | Graphs
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.