X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematical physics (18) 18
precanonical quantization (14) 14
physics, mathematical (13) 13
field theory (11) 11
de donder-weyl theory (9) 9
general relativity and quantum cosmology (9) 9
high energy physics - theory (9) 9
clifford algebra (8) 8
calculus (7) 7
geometry (6) 6
matemàtiques i estadística (6) 6
symplectic geometry (6) 6
àrees temàtiques de la upc (6) 6
camps, teoria dels (5) 5
de donder-weyl formalism (5) 5
formulation (5) 5
functional schrödinger representation (5) 5
mathematics (5) 5
mechanics (5) 5
physics, particles & fields (5) 5
quantum gravity (5) 5
53 differential geometry (4) 4
70 mechanics of particles and systems::70s classical field theories [classificació ams] (4) 4
classificació ams (4) 4
differential geometry (4) 4
equations (4) 4
functional schrodinger representation (4) 4
geometria (4) 4
geometria diferencial (4) 4
mathematical analysis (4) 4
multisymplectic manifolds (4) 4
physics, multidisciplinary (4) 4
quantization (4) 4
yang-mills theory (4) 4
53 differential geometry::53d symplectic geometry, contact geometry [classificació ams] (3) 3
55 algebraic topology (3) 3
55 algebraic topology::55r fiber spaces and bundles [classificació ams] (3) 3
55r fiber spaces and bundles (3) 3
70 mechanics of particles and systems (3) 3
70s classical field theories (3) 3
astronomy & astrophysics (3) 3
canonical quantization (3) 3
einstein equations (3) 3
fiber bundles (3) 3
formalism (3) 3
gauge (3) 3
gauge theory (3) 3
mass gap (3) 3
matemàtiques i estadística::geometria::geometria diferencial [àrees temàtiques de la upc] (3) 3
mathematics - differential geometry (3) 3
poisson-gerstenhaber bracket (3) 3
quantum field theory (3) 3
quantum field theory in curved space-time (3) 3
quantum physics (3) 3
space (3) 3
vielbein gravity (3) 3
53 differential geometry::53c global differential geometry [classificació ams] (2) 2
53c global differential geometry (2) 2
53d symplectic geometry, contact geometry (2) 2
classical field theories (2) 2
covariant hamiltonian-formalism (2) 2
equivalence (2) 2
espais fibrats (2) 2
fiber spaces (2) 2
field-theory (2) 2
fields (2) 2
geometria simplèctica (2) 2
gerstenhaber algebra (2) 2
gravitation (2) 2
gravity (2) 2
hamiltonian-formalism (2) 2
high energy physics (2) 2
k-cosymplectic manifolds (2) 2
lagrange equations (2) 2
lagrange, equacions de (2) 2
matemàtiques i estadística [àrees temàtiques de la upc] (2) 2
matemàtiques i estadística::geometria [àrees temàtiques de la upc] (2) 2
mathematics, applied (2) 2
measurement (2) 2
physics of elementary particles and fields (2) 2
physics, nuclear (2) 2
poisson bracket (2) 2
polysymplectic formalism (2) 2
polysymplectic structure (2) 2
quantum theory (2) 2
quantum yang-mills theory (2) 2
schroedinger equation (2) 2
symmetries (2) 2
theory (2) 2
topologia algebraica (2) 2
vacuum states (2) 2
varietats simplèctiques (2) 2
2nd-order classical field theories (1) 1
37k infinite-dimensional hamiltonian systems (1) 1
49 calculus of variations and optimal control; optimization (1) 1
49 calculus of variations and optimal control; optimization::49s05 variational principles of physics [classificació ams] (1) 1
49s05 variational principles of physics (1) 1
70s05 70h03, 70h05, 53d12 (1) 1
83 relativity and gravitational theory (1) 1
83 relativity and gravitational theory::83c general relativity [classificació ams] (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


by Vey, D
Classical and Quantum Gravity, ISSN 0264-9381, 05/2015, Volume 32, Issue 9, pp. 95005 - 95054
Journal Article
Classical and Quantum Gravity, ISSN 0264-9381, 11/2017, Volume 34, Issue 23, p. 235002
...) under the De Donder-Weyl Hamiltonian formulation. The field equations, known in this formalism as the De Donder- Weyl equations, are obtained by means of the graded Poisson-Gerstenhaber bracket structure present within the De Donder-Weyl formulation... 
gravity | Poisson-Gerstenhaber bracket | gauge theory | Hamiltonian | De Donder-Weyl equations | Einstein equat | polysymplectic formalism | SUPERGRAVITY | PHYSICS, MULTIDISCIPLINARY | FIELD-THEORY | CALCULUS | Einstein equations | ASTRONOMY & ASTROPHYSICS | VARIABLES | PRECANONICAL QUANTIZATION | GAUGE | GEOMETRY | PHYSICS, PARTICLES & FIELDS
Journal Article
CLASSICAL AND QUANTUM GRAVITY, ISSN 0264-9381, 06/2019, Volume 36, Issue 11, p. 115003
... naturally emerge by solving the simplicity constraints of the theory. Further, from the polysymplectic analysis of the CMPR action the De Donder-Weyl Hamiltonian... 
Immirzi parameter | FIELDS | QUANTUM SCIENCE & TECHNOLOGY | PHYSICS, MULTIDISCIPLINARY | CALCULUS | polysymplectic formalism | BF gravity | Einstein equations | De Donder-Weyl theory | Poisson-Gerstenhaber bracket | ASTRONOMY & ASTROPHYSICS | PRECANONICAL QUANTIZATION | PHYSICS, PARTICLES & FIELDS
Journal Article
International Journal of Modern Physics A, ISSN 0217-751X, 06/2017, Volume 32, Issue 17, p. 1750101
We analyze the De Donder–Weyl covariant field equations for the topologically massive Yang–Mills theory... 
De Donder-Weyl Hamiltonian | Yang-Mills | Gauge theory | polysymplectic formulation | Poisson-Gerstenhaber bracket | Chern-Simons | SIMONS | PHYSICS, NUCLEAR | QUANTIZATION | PHYSICS, PARTICLES & FIELDS
Journal Article
Reports on Mathematical Physics, ISSN 0034-4877, 12/2018, Volume 82, Issue 3, pp. 373 - 388
Journal Article
International Journal of Geometric Methods in Modern Physics, ISSN 0219-8878, 09/2017, Volume 14, Issue 9
The spectrum of masses of the colorless states of DW Hamiltonian operator of quantum SU(2) Yang-Mills field theory on R-D obtained via the precanonical... 
eigenvalues | precanonical quantization | De Donder-Weyl formalism | mass gap | Airy function | Clifford analysis | discrete spectrum | Quantum Yang-Mills theory | Schrödinger operators | MECHANICS | Schrodinger operators | REPRESENTATION | PHYSICS, MATHEMATICAL
Journal Article
International Journal of Geometric Methods in Modern Physics, ISSN 0219-8878, 2018, Volume 16, Issue 2
Journal Article
International Journal of Modern Physics E, ISSN 0218-3013, 07/2016, Volume 25, Issue 7, p. 1642005
Electromagnetism, the strong and the weak interactions are commonly formulated as gauge theories in a Lagrangian description. In this paper, we present an... 
canonical transformation | Gauge theory | de Donder-Weyl theory | field theory | Hamilton formalism | scalar electrodynamics | FIELD-THEORY | CALCULUS | PHYSICS, NUCLEAR | FORMALISM | PHYSICS, PARTICLES & FIELDS
Journal Article
Annals of Physics, ISSN 0003-4916, 03/2020, Volume 414, p. 168092
We develop a new geometric framework suitable for dealing with Hamiltonian field theories with dissipation. To this end we define the notions of k-contact... 
[formula omitted]-symplectic structure | Burgers’ equation | Contact structure | De Donder–Weyl theory | Hamiltonian field theory | System with dissipation | SYMMETRIES | PHYSICS, MULTIDISCIPLINARY | De Donder-Weyl theory | Burgers' equation | k-symplectic structure
Journal Article
AIP Conference Proceedings, ISSN 0094-243X, 2013, Volume 1514, Issue 1, pp. 73 - 76
Conference Proceeding
Journal of Geometric Mechanics, ISSN 1941-4889, 03/2012, Volume 4, Issue 1, pp. 1 - 26
.... Using this triple, we prove that Euler-Lagrange and Hamilton-De Donder-Weyl equations are the local equations defining Lagrangian submanifolds... 
Hamilton-De Donder-Weyl equation | MATHEMATICS, APPLIED | multisymplectic structure | MAPS | Lagrangian submanifold | EQUATIONS | SYSTEMS | Field theory | Tulczyjew's triple | Euler-Lagrange equation | PHYSICS, MATHEMATICAL | GEOMETRY
Journal Article
14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Proceedings, 2018, pp. 2677 - 2682
Conference Proceeding
Reports on Mathematical Physics, ISSN 0034-4877, 2004, Volume 53, Issue 2, pp. 181 - 193
Precanonical quantization of pure Yang-Mills fields, which is based on the covariant De Donder-Weyl (DW... 
Functional Schrödinger representation | Mass gap | De Donder-Weyl formalism | Magnetic opreator | Yang-Mills theory | Precanonical quantization | Clifford algebra
Journal Article
SYMMETRY-BASEL, ISSN 2073-8994, 11/2019, Volume 11, Issue 11, p. 1413
Journal Article
Nonlinear Phenomena in Complex Systems, ISSN 1561-4085, 2014, Volume 17, Issue 4, pp. 372 - 376
Journal Article
14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Proceedings, 2018, pp. 3907 - 3915
Conference Proceeding
Reports on Mathematical Physics, ISSN 0034-4877, 1998, Volume 41, Issue 1, pp. 49 - 90
Journal Article
14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, Proceedings, 2018, pp. 2828 - 2835
Conference Proceeding
International Journal for Computational Civil and Structural Engineering, ISSN 2587-9618, 12/2017, Volume 13, Issue 4, pp. 82 - 95
.... The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder... 
refined shell theory, analytical mechanics of continua, Hamiltonian formalism, de Donder – Weyl formulation, conservation laws
Journal Article
Journal of Geometry and Symmetry in Physics, ISSN 1312-5192, 2015, Volume 37, pp. 43 - 66
J. Geom. Symmetry Phys. 37 (2015) 43-66 We discuss the precanonical quantization of fields which is based on the De Donder--Weyl (DW... 
Curved space-time | Schrödinger functional | De Donder-Weyl theory | Yang-Mills theory | Precanonical quantization | Clifford algebra | Polysymplectic structure | Quantum field theory
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.