X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics, applied (86) 86
algorithms (71) 71
convergence (56) 56
optimization (51) 51
mathematics (50) 50
operations research & management science (47) 47
douglas-rachford splitting (46) 46
splitting (33) 33
operators (32) 32
douglas-rachford algorithm (29) 29
algorithm (28) 28
analysis (27) 27
sum (26) 26
computer science (23) 23
90c25 (21) 21
mathematics - optimization and control (21) 21
linear convergence (19) 19
methods (19) 19
operations research/decision theory (19) 19
douglas–rachford algorithm (18) 18
computer science, software engineering (17) 17
douglas-rachford (16) 16
feasibility (16) 16
proximal point algorithm (16) 16
convexity (15) 15
douglas–rachford splitting (15) 15
hilbert space (15) 15
iterative methods (15) 15
mathematical analysis (15) 15
calculus of variations and optimal control; optimization (14) 14
convex optimization (14) 14
optimization and control (14) 14
theory of computation (14) 14
decomposition (13) 13
numerical analysis (13) 13
65k05 (12) 12
computer science, artificial intelligence (12) 12
douglas-rachford method (12) 12
douglas-rachford splitting method (12) 12
maximally monotone operator (12) 12
resolvent (12) 12
studies (12) 12
applications of mathematics (11) 11
engineering, electrical & electronic (11) 11
projection (11) 11
alternating direction method of multipliers (10) 10
minimization (10) 10
multipliers (10) 10
alternating direction method (9) 9
engineering, general (9) 9
mathematical models (9) 9
monotone inclusions (9) 9
regularization (9) 9
sets (9) 9
subspaces (9) 9
47h05 (8) 8
65k10 (8) 8
alternating projections (8) 8
approximation (8) 8
douglas–rachford method (8) 8
firmly nonexpansive mapping (8) 8
inclusions (8) 8
inverse problems (8) 8
mathematical methods in physics (8) 8
mathematical optimization (8) 8
projections (8) 8
attouch-thera duality (7) 7
automation & control systems (7) 7
hilbert-space (7) 7
monotone inclusion (7) 7
operator splitting (7) 7
total variation minimization (7) 7
usage (7) 7
47j25 (6) 6
49m27 (6) 6
admm (6) 6
computer science, general (6) 6
convex and discrete geometry (6) 6
douglas-rachford splitting operator (6) 6
economic models (6) 6
global convergence (6) 6
image processing (6) 6
image recovery (6) 6
image restoration (6) 6
maximal monotone-operators (6) 6
monotone operators (6) 6
noise (6) 6
nonexpansive mapping (6) 6
operations research, management science (6) 6
real functions (6) 6
signal and image processing (6) 6
statistics, general (6) 6
90c22 (5) 5
90c26 (5) 5
[math.math-oc]mathematics [math]/optimization and control [math.oc] (5) 5
algebra (5) 5
artificial intelligence (5) 5
attouch–théra duality (5) 5
computational geometry (5) 5
convergence rate (5) 5
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Applied Mathematics and Computation, ISSN 0096-3003, 04/2015, Volume 256, pp. 472 - 487
We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties... 
Douglas–Rachford splitting | Krasnosel’skiı̆–Mann algorithm | Convex optimization | Primal–dual algorithm | Inertial splitting algorithm | Krasnosel'skiѣ-Mann algorithm Primal-dual algorithm Convex optimization | Douglas-Rachford splitting | MATHEMATICS, APPLIED | Primal-dual algorithm | Krasnosel'skii-Mann algorithm | MINIMIZATION | WEAK-CONVERGENCE | PROXIMAL POINT ALGORITHM | OPERATORS | COMPOSITE
Journal Article
Mathematical programming, ISSN 1436-4646, 2019, Volume 182, Issue 1-2, pp. 233 - 273
Journal Article
Journal of optimization theory and applications, ISSN 1573-2878, 2019, Volume 183, Issue 1, pp. 179 - 198
Journal Article
Optimization letters, ISSN 1862-4480, 2018, Volume 13, Issue 4, pp. 717 - 740
We shed light on the structure of the three-operator version of the forward-Douglas-Rachford splitting algorithm for finding a zero of a sum of maximally monotone operators A+B... 
Douglas–Rachford splitting | Nonsmooth convex optimization | Proximal splitting | Monotone operator splitting | Forward–backward splitting | MATHEMATICS, APPLIED | OPERATIONS RESEARCH & MANAGEMENT SCIENCE | Douglas-Rachford splitting | Forward-backward splitting | Algorithms
Journal Article
SIAM journal on optimization, ISSN 1095-7189, 2020, Volume 30, Issue 1, pp. 149 - 181
...) and its close relatives, Douglas-Rachford splitting (DRS) and Peaceman-Rachford splitting (PRS), have been observed to perform remarkably well when applied to certain classes of structured nonconvex optimization problems... 
Peaceman-Rachford splitting | ALTERNATING DIRECTION METHOD | MATHEMATICS, APPLIED | FEASIBILITY | nonsmooth nonconvex optimization | Douglas-Rachford splitting | FORWARD-BACKWARD ENVELOPE | SUM | ALGORITHMS | PROJECTIONS | ADMM | Mathematics - Optimization and Control
Journal Article
SIAM journal on optimization, ISSN 1095-7189, 2019, Volume 29, Issue 4, pp. 2697 - 2724
The Douglas-Rachford algorithm is a classical and powerful splitting method for minimizing the sum of two convex functions and, more generally, finding a zero of the sum of two maximally monotone operators... 
CONVEX FEASIBILITY PROBLEMS | MATHEMATICS, APPLIED | weak monotonicity | global convergence | inclusion problem | PROXIMAL POINT ALGORITHM | FINITE CONVERGENCE | Lipschitz continuity | strong monotonicity | PROJECTION | Douglas-Rachford algorithm | REGULARITY | linear convergence | SETS | Fejer monotonicity | Mathematics - Optimization and Control
Journal Article