X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics, applied (86) 86
algorithms (71) 71
convergence (56) 56
optimization (51) 51
mathematics (50) 50
operations research & management science (47) 47
douglas-rachford splitting (46) 46
splitting (33) 33
operators (32) 32
douglas-rachford algorithm (29) 29
algorithm (28) 28
analysis (27) 27
sum (26) 26
computer science (23) 23
90c25 (21) 21
mathematics - optimization and control (21) 21
linear convergence (19) 19
methods (19) 19
operations research/decision theory (19) 19
douglas–rachford algorithm (18) 18
computer science, software engineering (17) 17
douglas-rachford (16) 16
feasibility (16) 16
proximal point algorithm (16) 16
convexity (15) 15
douglas–rachford splitting (15) 15
hilbert space (15) 15
iterative methods (15) 15
mathematical analysis (15) 15
calculus of variations and optimal control; optimization (14) 14
convex optimization (14) 14
optimization and control (14) 14
theory of computation (14) 14
decomposition (13) 13
numerical analysis (13) 13
65k05 (12) 12
computer science, artificial intelligence (12) 12
douglas-rachford method (12) 12
douglas-rachford splitting method (12) 12
maximally monotone operator (12) 12
resolvent (12) 12
studies (12) 12
applications of mathematics (11) 11
engineering, electrical & electronic (11) 11
projection (11) 11
alternating direction method of multipliers (10) 10
minimization (10) 10
multipliers (10) 10
alternating direction method (9) 9
engineering, general (9) 9
mathematical models (9) 9
monotone inclusions (9) 9
regularization (9) 9
sets (9) 9
subspaces (9) 9
47h05 (8) 8
65k10 (8) 8
alternating projections (8) 8
approximation (8) 8
douglas–rachford method (8) 8
firmly nonexpansive mapping (8) 8
inclusions (8) 8
inverse problems (8) 8
mathematical methods in physics (8) 8
mathematical optimization (8) 8
projections (8) 8
attouch-thera duality (7) 7
automation & control systems (7) 7
hilbert-space (7) 7
monotone inclusion (7) 7
operator splitting (7) 7
total variation minimization (7) 7
usage (7) 7
47j25 (6) 6
49m27 (6) 6
admm (6) 6
computer science, general (6) 6
convex and discrete geometry (6) 6
douglas-rachford splitting operator (6) 6
economic models (6) 6
global convergence (6) 6
image processing (6) 6
image recovery (6) 6
image restoration (6) 6
maximal monotone-operators (6) 6
monotone operators (6) 6
noise (6) 6
nonexpansive mapping (6) 6
operations research, management science (6) 6
real functions (6) 6
signal and image processing (6) 6
statistics, general (6) 6
90c22 (5) 5
90c26 (5) 5
[math.math-oc]mathematics [math]/optimization and control [math.oc] (5) 5
algebra (5) 5
artificial intelligence (5) 5
attouch–théra duality (5) 5
computational geometry (5) 5
convergence rate (5) 5
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Mathematical programming, ISSN 1436-4646, 2019, Volume 182, Issue 1-2, pp. 233 - 273
Journal Article
Applied Mathematics & Optimization, ISSN 0095-4616, 12/2019, Volume 80, Issue 3, pp. 665 - 678
Journal Article
Applied Mathematics and Computation, ISSN 0096-3003, 04/2015, Volume 256, pp. 472 - 487
We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties... 
Douglas–Rachford splitting | Krasnosel’skiı̆–Mann algorithm | Convex optimization | Primal–dual algorithm | Inertial splitting algorithm | Krasnosel'skiѣ-Mann algorithm Primal-dual algorithm Convex optimization | Douglas-Rachford splitting | MATHEMATICS, APPLIED | Primal-dual algorithm | Krasnosel'skii-Mann algorithm | MINIMIZATION | WEAK-CONVERGENCE | PROXIMAL POINT ALGORITHM | OPERATORS | COMPOSITE
Journal Article
Journal of applied mathematics & computing, ISSN 1865-2085, 2015, Volume 51, Issue 1-2, pp. 569 - 591
In this paper, we study the Douglas–Rachford (DR) splitting method when applied to the standard semidefinite programming, and we introduce a new variant of this method and under weak assumptions prove its global convergence... 
Computational Mathematics and Numerical Analysis | Semidefinite programming | 90C06 | Mathematics | Theory of Computation | Douglas–Rachford splitting method | Convergence | Iteration complexity | 90C30 | 90C35 | Mathematics of Computing | 90C22 | Appl.Mathematics/Computational Methods of Engineering | Douglas-Rachford splitting method | Studies | Mathematical analysis | Splitting | Direct reduction | Mathematical models | Robustness | Iterative methods | Symmetry | Mathematical programming
Journal Article