X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (5900) 5900
Conference Proceeding (678) 678
Book Chapter (91) 91
Dissertation (43) 43
Book / eBook (31) 31
Newspaper Article (26) 26
Magazine Article (10) 10
Publication (7) 7
Government Document (3) 3
Paper (3) 3
Newsletter (2) 2
Web Resource (2) 2
Standard (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (2999) 2999
mathematics, applied (2701) 2701
algorithms (2277) 2277
convergence (1618) 1618
analysis (1537) 1537
fixed point (1399) 1399
fixed points (1294) 1294
mathematics, general (1120) 1120
applications of mathematics (1028) 1028
mathematical analysis (939) 939
theorems (923) 923
iterative methods (889) 889
fixed point theory (878) 878
nonexpansive-mappings (834) 834
applied mathematics (829) 829
approximation (806) 806
optimization (801) 801
mapping (769) 769
hilbert space (758) 758
fixed-points (678) 678
operators (658) 658
topology (623) 623
research (616) 616
usage (611) 611
studies (607) 607
mathematical and computational biology (599) 599
geometry and topology (593) 593
mappings (593) 593
differential geometry (589) 589
mathematical models (587) 587
inequalities (583) 583
nonexpansive mapping (529) 529
banach space (498) 498
iterative algorithms (494) 494
engineering, electrical & electronic (455) 455
algorithm (453) 453
strong convergence (445) 445
banach spaces (440) 440
strong-convergence theorems (437) 437
variational inequality (427) 427
fixed-point arithmetic (401) 401
operations research & management science (400) 400
article subject (396) 396
computer science (382) 382
fixed-point problems (381) 381
methods (368) 368
projection (365) 365
strong-convergence (364) 364
banach-spaces (345) 345
weak (325) 325
47h09 (308) 308
hilbert-spaces (300) 300
47h10 (288) 288
equilibrium problem (273) 273
viscosity approximation methods (265) 265
mathematical research (262) 262
fixed-point (237) 237
signal processing algorithms (236) 236
existence (231) 231
equilibrium problems (228) 228
weak-convergence (224) 224
contraction operators (214) 214
equilibrium (208) 208
computer simulation (207) 207
extragradient method (202) 202
equations (198) 198
theory of computation (198) 198
common fixed point (191) 191
systems (190) 190
iterative algorithm (188) 188
computer science, theory & methods (187) 187
functional analysis (187) 187
variational-inequalities (187) 187
asymptotic properties (185) 185
nonlinearity (185) 185
applied mathematics. quantitative methods (181) 181
hardware (181) 181
algorithm design and analysis (179) 179
operations research/decision theory (176) 176
iterative method (175) 175
numerical analysis (175) 175
sets (175) 175
stability (173) 173
signal processing (172) 172
convergence theorems (168) 168
problems (158) 158
variational inequalities (156) 156
47j25 (155) 155
computation (152) 152
fixed point problem (148) 148
feasibility (145) 145
differential equations (143) 143
metric spaces (142) 142
monotone mappings (141) 141
field programmable gate arrays (139) 139
quantization (136) 136
viscosity (133) 133
common fixed-points (131) 131
digital signal processing (129) 129
metric space (129) 129
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (6729) 6729
Chinese (34) 34
Japanese (23) 23
French (10) 10
Korean (10) 10
German (5) 5
Spanish (4) 4
Portuguese (3) 3
Russian (3) 3
Croatian (2) 2
Czech (2) 2
Dutch (2) 2
Arabic (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Optimization letters, ISSN 1862-4480, 2016, Volume 12, Issue 1, pp. 87 - 102
Journal Article
Inverse problems, ISSN 1361-6420, 2006, Volume 22, Issue 6, pp. 2021 - 2034
A variable Krasnosel'skii-Mann algorithm generates a sequence {x(n)} via the formula x(n+1) = (1 - alpha(n))x(n) + alpha(n)T(n)x(n), where {alpha(n)} is a sequence in [0, 1] and {T-n} is a sequence of nonexpansive mappings... 
MATHEMATICS, APPLIED | NONEXPANSIVE-MAPPINGS | BANACH-SPACES | THEOREMS | ITERATIVE ALGORITHMS | CQ ALGORITHM | PHYSICS, MATHEMATICAL | OPERATORS | FIXED-POINTS
Journal Article
Journal of scientific computing, ISSN 1573-7691, 2018, Volume 76, Issue 3, pp. 1698 - 1717
Journal Article
Pattern recognition, ISSN 0031-3203, 2002, Volume 35, Issue 10, pp. 2267 - 2278
...) clustering algorithms. These alternative types of c-means clustering have more robustness than c-means clustering... 
Alternative c-means | Hard c-means | Robustness | Noise | Fixed-point iterations | Fuzzy c-means | alternative c-means | hard c-means | fixed-point iterations | robustness | noise | FUZZY | fuzzy c-means | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article
Journal of global optimization, ISSN 1573-2916, 2017, Volume 70, Issue 3, pp. 687 - 704
Journal Article
Journal Article
Journal of inequalities and applications, ISSN 1029-242X, 2013, Volume 2013, Issue 1, pp. 199 - 14
Journal Article
Pattern recognition, ISSN 0031-3203, 2016, Volume 60, pp. 971 - 982
We propose a fast algorithm for approximate matching of large graphs. Previous graph matching algorithms suffer from high computational complexity and therefore do not have good scalability... 
Projected fixed-point | Feature correspondence | Large graph algorithm | Point matching | Graph matching | RECOGNITION | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC | Algorithms
Journal Article
Archiv der Mathematik, ISSN 0003-889X, 6/2014, Volume 102, Issue 6, pp. 589 - 600
We discuss the Douglas–Rachford algorithm to solve the feasibility problem for two closed sets A,B in $${\mathbb{R}^d}$$ R d... 
Stability | Mathematics, general | Nonconvex feasibility problem | Mathematics | Discrete dynamical system | Fixed-point | Convergence | MATHEMATICS | Algorithms | Optimization and Control
Journal Article
Bulletin of the Malaysian Mathematical Sciences Society, ISSN 0126-6705, 1/2019, Volume 42, Issue 1, pp. 201 - 221
The paper proposes an explicit parallel iterative algorithm for solving variational inequalities over the intersection of fixed point sets of finitely many demicontractive mappings... 
47J20 | Variational inequality | Mathematics, general | Mathematics | Demicontractive mapping | Parallel computation | Applications of Mathematics | 47H05 | 47J25 | 65J15 | Nonexpansive mapping | ITERATIVE ALGORITHM | REGULARIZING SYSTEMS | MATHEMATICS | KACZMARZ METHODS | STEEPEST-DESCENT METHODS | MAPPINGS | EQUILIBRIUM PROBLEMS | FIXED-POINT PROBLEMS | STRONG-CONVERGENCE
Journal Article
Energy (Oxford), ISSN 0360-5442, 09/2018, Volume 159, pp. 61 - 73
Journal Article