X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (342) 342
hausdorff dimension (299) 299
mathematics, applied (128) 128
fractals (120) 120
packing dimension (104) 104
hausdorff measure (74) 74
packing measure (62) 62
sets (54) 54
mathematics, general (49) 49
hausdorff measures (48) 48
statistics & probability (48) 48
analysis (47) 47
hausdorff dimensions (44) 44
28a80 (42) 42
hausdorff (42) 42
mathematical analysis (33) 33
28a78 (32) 32
mathematical theorems (32) 32
mathematics - dynamical systems (32) 32
dimension (31) 31
mathematical functions (30) 30
mathematics - classical analysis and odes (30) 30
physics, mathematical (30) 30
self-similar sets (28) 28
60g17 (23) 23
integers (23) 23
mathematics - probability (23) 23
multifractal analysis (23) 23
cantor set (22) 22
divergence points (20) 20
entropy (20) 20
multifractals (20) 20
cantor sets (19) 19
carpets (19) 19
density (19) 19
geometry (19) 19
julia sets (19) 19
mathematics - metric geometry (19) 19
applied mathematics (18) 18
dynamical systems (18) 18
probability theory and stochastic processes (18) 18
projections (18) 18
studies (18) 18
brownian motion (17) 17
iterated function systems (17) 17
local dimension (17) 17
qa mathematics (17) 17
self-similar measures (17) 17
60g15 (16) 16
hausdorff and packing measures (16) 16
applications of mathematics (15) 15
assouad dimension (15) 15
physics (15) 15
self-similarity (15) 15
conformal measures (14) 14
cubes (14) 14
fractal (14) 14
probability (14) 14
self-similar set (14) 14
bernoulli convolutions (13) 13
continuity (13) 13
dimensions (13) 13
formalism (13) 13
lebesgue measures (13) 13
maps (13) 13
systems (13) 13
theorems (13) 13
borel sets (12) 12
cylinders (12) 12
kolmogorov complexity (12) 12
local-times (12) 12
mathematical models (12) 12
box-counting dimension (11) 11
capacity (11) 11
ergodic theory (11) 11
points (11) 11
similar sets (11) 11
trees (11) 11
box dimension (10) 10
computer science, theory & methods (10) 10
level sets (10) 10
metric geometry (10) 10
range (10) 10
set theory (10) 10
spaces (10) 10
spectrum (10) 10
theoretical, mathematical and computational physics (10) 10
computer science (9) 9
dimensional measurements (9) 9
dynamical systems and ergodic theory (9) 9
dynamics (9) 9
fractal geometry (9) 9
graphs (9) 9
mathematics, interdisciplinary applications (9) 9
metric space (9) 9
partial differential equations (9) 9
random variables (9) 9
research (9) 9
self-affine measures (9) 9
statistics, general (9) 9
more...
Library Location Library Location
Library Location Library Location
X
Sort by Item Count (A-Z)
Filter by Count
Mathematical Sciences - Stacks (8) 8
Gerstein Science - Stacks (5) 5
Engineering & Comp. Sci. - Stacks (2) 2
UofT at Scarborough - Stacks (2) 2
Astronomy & Astrophysics - Ask at library (1) 1
Chemistry (A D Allen) - Stacks (1) 1
Collection Dvlpm't (Acquisitions) - Closed Orders (1) 1
Mathematical Sciences - Missing (1) 1
Physics - Stacks (1) 1
Royal Ontario Museum - Stacks (1) 1
UTL at Downsview - May be requested (1) 1
UofT at Mississauga - Stacks (1) 1
more...
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (489) 489
French (7) 7
German (5) 5
Japanese (3) 3
Korean (3) 3
Czech (2) 2
Russian (1) 1
Spanish (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Aequationes mathematicae, ISSN 0001-9054, 8/2018, Volume 92, Issue 4, pp. 709 - 735
We study the Hausdorff and packing measures of typical compact metric spaces belonging to the Gromov–Hausdorff space (of all compact metric spaces) equipped... 
The Gromov–Hausdorff metric | Compact metric space | Analysis | Hewitt–Stromberg measure Hausdorff measure | 28A78 | 28A80 | Packing measure | Mathematics | Box dimension | Combinatorics | MATHEMATICS | DIMENSIONS | MATHEMATICS, APPLIED | SETS | The Gromov-Hausdorff metric | Hewitt-Stromberg measure Hausdorff measure
Journal Article
Real Analysis Exchange, ISSN 0147-1937, 1/2015, Volume 40, Issue 1, pp. 113 - 128
We estimate the -Hausdorff and -packing measures of balanced Cantor sets, and characterize the corresponding dimension partitions. This generalizes results... 
Integers | Closed intervals | Open intervals | Cantor set | Symbolism | Mathematical functions | Research Articles | Hausdorff measures | gauge functions | dimension functions | cut-out sets | 28A78 | 28A80 | Cantor sets | packing measures
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 06/2019, Volume 474, Issue 1, pp. 143 - 156
We compute the exact Hausdorff and Packing measures of linear Cantor sets which might not be self similar or homogeneous. The calculation is based on the local... 
Packing measure | Hausdorff measure | Cantor set | MATHEMATICS | MATHEMATICS, APPLIED | DENSITIES | COMPUTABILITY
Journal Article
Monatshefte für Mathematik, ISSN 0026-9255, 11/2011, Volume 164, Issue 3, pp. 313 - 323
We give a new estimate for the ratio of s-dimensional Hausdorff measure $${\mathcal{H}^s}$$ and (radius-based) packing measure $${\mathcal{P}^s}$$ of a set in... 
Hausdorff measure | Metric space | 28A78 | Mathematics, general | Packing measure | Mathematics | Density | MATHEMATICS | FUNDAMENTAL GEOMETRICAL PROPERTIES | PLANE SETS | POINTS
Journal Article
Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, ISSN 0960-0779, 09/2019, Volume 126, pp. 203 - 217
The multifractal formalism for measures holds whenever the existence of corresponding Gibbs-like measures supported on the singularities sets holds. In the... 
Multifractal formalism | Mixed cases | Hölderian measures | Hausdorff and packing dimensions | Hausdorff and packing measures | Holderian measures | NUMBERS | PHYSICS, MULTIDISCIPLINARY | SUBSETS | CANTOR SETS | PHYSICS, MATHEMATICAL | SUMS | DIMENSIONS | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | HAUSDORFF MEASURES | DIVERGENCE POINTS | PROJECTIONS
Journal Article
Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, ISSN 0960-0779, 10/2017, Volume 103, pp. 1 - 11
In this paper, we establish some density results related to the multifractal generalization of the centered Hausdorff and packing measures. We also focus on... 
Relative multifractal analysis | Hausdorff and packing dimensions | Hausdorff and packing measures | SPACE | Hausdorffand packing measures | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | PHYSICS, MULTIDISCIPLINARY | Hausdorffand packing dimensions | PHYSICS, MATHEMATICAL | EQUIVALENCE | Specific gravity | Analysis
Journal Article
Aequationes mathematicae, ISSN 0001-9054, 6/2008, Volume 75, Issue 3, pp. 208 - 225
We analyze the local behaviour of the Hausdorff measure and the packing measure of self-similar sets. In particular, if K is a self-similar set whose Hausdorff... 
Hausdorff measure | Analysis | 28A80 | Mathematics | Combinatorics | self-similar measure | packing measure | densities | Self-similar set | Self-similar measure | Packing measure | Densities | MATHEMATICS | MATHEMATICS, APPLIED | Texts | Theorems | Density | Inequalities | Self-similarity
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 06/2012, Volume 390, Issue 1, pp. 234 - 243
Let be a dilation-stable Lévy process on . We determine a Hausdorff measure function such that the graph has positive finite -measure. We also investigate the... 
Packing measure | Graph | Dilation-stable Lévy processes | Exact Hausdorff measure function | MATHEMATICS | MATHEMATICS, APPLIED | Dilation-stable Levy processes | SAMPLE PATH PROPERTIES
Journal Article
Nonlinearity, ISSN 0951-7715, 04/2018, Volume 31, Issue 6, pp. 2571 - 2589
We show that the s-dimensional packing measure P-s(S) of the Sierpinski gasket S, where s = log 3/log 2 is the similarity dimension of S, satisfies 1.6677 <=... 
Sierpinski gasket | computability of fractal Measures | packing measure | self-similar sets | algorithm | MATHEMATICS, APPLIED | EQUATIONS | computability of fractal measures | PHYSICS, MATHEMATICAL | CENTERED HAUSDORFF MEASURES | COMPUTABILITY
Journal Article
Geometriae Dedicata, ISSN 0046-5755, 12/2018, Volume 197, Issue 1, pp. 173 - 192
Let J be the limit set of an iterated function system insatisfying the open set condition. It is well known that the h-dimensional packing measure of J is... 
Cantor sets | Packing measure | Fractals | Iterated function systems | Sierpiński triangles | MATHEMATICS | HAUSDORFF | SELF-SIMILAR SETS | Sierpiski triangles | 28A78 | 28A80 | 37C45
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2008, Volume 342, Issue 1, pp. 571 - 584
Journal Article
PROBABILITY THEORY AND RELATED FIELDS, ISSN 0178-8051, 02/2017, Volume 167, Issue 1-2, pp. 201 - 252
We consider super processes whose spatial motion is the d-dimensional Brownian motion and whose branching mechanism is critical or subcritical; such processes... 
PATH | Levy snake | LEVY TREES | SUPPORT | BRANCHING-PROCESSES | HAUSDORFF MEASURE | General branching mechanism | Total range | Exact packing measure | STATISTICS & PROBABILITY | Occupation measure | Super Brownian motion | Brownian motion | Occupation | Probability theory | Texts | Constants | Gages | Gauges
Journal Article
Publicacions Matemàtiques, ISSN 0214-1493, 1/2013, Volume 57, Issue 2, pp. 393 - 420
Journal Article
Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, ISSN 0960-0779, 05/2017, Volume 98, pp. 220 - 232
In this paper we obtain the rates of convergence of the algorithms given in [13] and [14] for an automatic computation of the centered Hausdorff and packing... 
Computability of fractal measures | Centered Hausdorff measure | Packing measure | Self-similar sets | Rate of convergence | PHYSICS, MULTIDISCIPLINARY | CANTOR SETS | PHYSICS, MATHEMATICAL | COMPUTABILITY | FRACTALS | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | DIMENSION | SIERPINSKI GASKET | Analysis | Algorithms | Numerical analysis
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2012, Volume 386, Issue 2, pp. 801 - 812
In this paper we consider a class of symmetric Cantor sets in . Under certain separation condition we determine the exact packing measure of such a Cantor set... 
Packing measure | Cantor set | Hausdorff measure | Upper and lower density | MATHEMATICS | MATHEMATICS, APPLIED | POINTWISE DENSITIES | HAUSDORFF MEASURES
Journal Article
Ergodic Theory and Dynamical Systems, ISSN 0143-3857, 08/2016, Volume 36, Issue 5, pp. 1534 - 1556
We present an algorithm to compute the exact value of the packing measure of self-similar sets satisfying the so called Strong Separation Condition (SSC) and... 
MATHEMATICS | MATHEMATICS, APPLIED | CANTOR SETS | DIMENSION | HAUSDORFF MEASURES | Computers | Algorithms | Convergence | Intervals | Separation | Gaskets | Dynamical systems | Information dissemination | Self-similarity | Mathematics - Dynamical Systems
Journal Article
Indiana University Mathematics Journal, ISSN 0022-2518, 1/2012, Volume 61, Issue 6, pp. 2085 - 2109
Journal Article
Journal of Theoretical Probability, ISSN 0894-9840, 4/1999, Volume 12, Issue 2, pp. 313 - 346
Burdzy and Khoshnevisan(9) have shown that the Hausdorff dimension of the level sets of an iterated Brownian motion (IBM) is equal to 3/4. In this paper, the... 
Hausdorff measure | level set | Probability Theory and Stochastic Processes | Mathematics | Statistics, general | Iterated Brownian motion | packing measure | local time | Packing measure | Level set | Local time | PATH | WIENER-PROCESSES | LAW | MODULUS | SUBORDINATOR | STATISTICS & PROBABILITY | iterated Brownian motion | THEOREMS | LOGARITHM
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.