X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (2730) 2730
Publication (278) 278
Conference Proceeding (40) 40
Book / eBook (26) 26
Book Chapter (23) 23
Dissertation (19) 19
Paper (4) 4
Web Resource (2) 2
Data Set (1) 1
Presentation (1) 1
Reference (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (1380) 1380
invariant measure (936) 936
mathematics, applied (868) 868
invariant-measures (817) 817
invariant measures (638) 638
statistics & probability (432) 432
physics, mathematical (342) 342
analysis (210) 210
dynamical systems (197) 197
ergodicity (175) 175
systems (172) 172
invariants (161) 161
maps (159) 159
dynamics (155) 155
mathematics - dynamical systems (152) 152
mathematics - probability (146) 146
mathematics, general (139) 139
markov processes (137) 137
physics (137) 137
mathematical analysis (136) 136
ergodic theory (134) 134
entropy (133) 133
transformations (129) 129
existence (126) 126
uniqueness (122) 122
probability (112) 112
dynamical-systems (107) 107
stability (101) 101
convergence (97) 97
continuous invariant-measures (95) 95
approximation (87) 87
mathematical theorems (87) 87
markov chains (86) 86
mechanics (86) 86
physics, multidisciplinary (86) 86
theoretical, mathematical and computational physics (82) 82
quantum physics (80) 80
mathematical physics (79) 79
applied mathematics (76) 76
density (73) 73
differential equations (72) 72
studies (71) 71
chaos (70) 70
attractors (69) 69
mathematical and computational physics (69) 69
semigroups (69) 69
algebra (68) 68
applications of mathematics (67) 67
equations (67) 67
mathematical models (67) 67
expanding maps (64) 64
probability theory and stochastic processes (64) 64
regularity (64) 64
frobenius-perron operator (59) 59
partial differential equations (59) 59
physical chemistry (59) 59
decay (58) 58
spaces (58) 58
lyapunov exponents (57) 57
noise (57) 57
ergodic processes (55) 55
hausdorff dimension (55) 55
mathematics, interdisciplinary applications (55) 55
models (55) 55
recurrence (55) 55
flows (54) 54
interval (54) 54
mathematical functions (54) 54
navier-stokes equations (53) 53
60h15 (52) 52
operators (51) 51
statistical properties (51) 51
integers (50) 50
absolutely continuous invariant measures (49) 49
piecewise monotonic transformations (49) 49
theorems (49) 49
diffeomorphisms (48) 48
large deviations (46) 46
sets (46) 46
stochastic processes (46) 46
markov chain (45) 45
multidisciplinary sciences (45) 45
mathematics - analysis of pdes (44) 44
research (44) 44
statistical physics (44) 44
stochasticity (43) 43
algorithms (42) 42
behavior (42) 42
statistics and probability (42) 42
topology (42) 42
differential-equations (41) 41
geometry (40) 40
[ math.math-pr ] mathematics [math]/probability [math.pr] (39) 39
interval maps (39) 39
modelling and simulation (39) 39
random variables (39) 39
absolutely continuous invariant measure (38) 38
brownian motion (38) 38
chaos theory (38) 38
random walk (38) 38
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (2799) 2799
French (20) 20
Japanese (16) 16
Chinese (3) 3
German (3) 3
Russian (3) 3
Spanish (3) 3
Belarusian (1) 1
Ukrainian (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


2013, ISBN 0415871255, xix, 288
This introductory text describes the principles of invariant measurement, how invariant measurement can be achieved with Rasch models, and how to use invariant... 
Rasch models | Social sciences | Psychology | methods | Psychometrics | Statistical methods | Models, Statistical | Invariant measures | Assessment & Testing | Measurement and Assessment | Medical Statistics | Testing
Book
Bulletin of the Iranian Mathematical Society, ISSN 1017-060X, 4/2019, Volume 45, Issue 2, pp. 515 - 525
For a locally compact group G and two closed subgroups H, K of G let N be the normalizer group of K in G and $$K{\backslash }G /H$$ K \ G / H be the double... 
Rho-function | Doble coset space | N -invariant measure | N -relatively invariant measure | Primary 47A55 | Secondary 39B52 | Mathematics, general | Mathematics | MATHEMATICS | N-invariant measure | N-relatively invariant measure
Journal Article
2013, Graduate studies in mathematics, ISBN 0821898531, Volume 148., ix, 277
Book
Nonlinearity, ISSN 0951-7715, 07/2018, Volume 31, Issue 9, pp. 4006 - 4030
Journal Article
2012, CRM monograph series, ISBN 0821875825, Volume 30, vii, 140
Book
Journal of Differential Equations, ISSN 0022-0396, 12/2019, Volume 268, Issue 1, pp. 1 - 59
This paper is concerned with the asymptotic behavior of the solutions of the fractional reaction-diffusion equations with polynomial drift terms of arbitrary... 
Nonlinear noise | Unbounded domain | Invariant measure | Stochastic reaction-diffusion equation | Mean random attractor | EXISTENCE | MATHEMATICS | INVARIANT-MEASURES | RANDOM ATTRACTORS | PULLBACK ATTRACTORS | REGULARITY | ASYMPTOTIC-BEHAVIOR | Distribution (Probability theory)
Journal Article
Stochastic Processes and their Applications, ISSN 0304-4149, 05/2020, Volume 130, Issue 5, pp. 2851 - 2885
We investigate a piecewise-deterministic Markov process with a Polish state space, whose deterministic behaviour between random jumps is governed by a finite... 
Markov process | Asymptotic stability | Exponential ergodicity | The strong law of large numbers | Gene expression | Invariant measure | INVARIANT-MEASURES | STABILITY | CONVERGENCE | STATISTICS & PROBABILITY
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 02/2019, Volume 470, Issue 1, pp. 159 - 168
We consider the non-autonomous dynamical system {τn}, where τn is a continuous map X→X, and X is a compact metric space. We assume that {τn} converges... 
Absolutely continuous invariant measures | Non-autonomous systems | MATHEMATICS | MATHEMATICS, APPLIED
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 05/2019, Volume 266, Issue 11, pp. 7205 - 7229
We first prove the existence and regularity of the trajectory attractor for a three-dimensional system of globally modified Navier–Stokes equations. Then we... 
Globally modified Navier–Stokes equations | Asymptotic regularity | Trajectory statistical solution | Invariant measure | Trajectory attractor | Globally modified Navier-Stokes equations | BEHAVIOR | 3-DIMENSIONAL SYSTEM | MATHEMATICS | INVARIANT-MEASURES | PULLBACK ATTRACTORS | V-ATTRACTORS | WEAK SOLUTIONS | DISSIPATIVE DYNAMICAL-SYSTEMS
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 02/2018, Volume 458, Issue 1, pp. 508 - 520
It is well known that for a P-homeomorphism f of the circle S1=R/Z with irrational rotation number ρf the Denjoy's inequality |log⁡Dfqn|≤V holds, where V is... 
Piecewise-linear circle homeomorphism | Rotation number | Invariant measure | Break point | DIFFEOMORPHISMS | MATHEMATICS | MATHEMATICS, APPLIED | INVARIANT-MEASURES | homeomorphism | SINGULARITIES | RIGIDITY | Piecewise-linear circle | Equality
Journal Article
Bulletin of the London Mathematical Society, ISSN 0024-6093, 04/2016, Volume 48, Issue 2, pp. 365 - 378
Abstract We prove that any Iterated Function System of circle homeomorphisms with at least one of them having dense orbit, is asymptotically stable. The... 
MATHEMATICS | MARKOV-PROCESSES | INVARIANT-MEASURES
Journal Article
Transactions of the American Mathematical Society, ISSN 0002-9947, 03/2019, Volume 371, Issue 3, pp. 1771 - 1793
We consider the topology and dynamics associated with a wide class of matchbox manifolds, including spaces of aperiodic tilings and suspensions of higher rank... 
Homology | Invariant measure | Matchbox manifold | Aperiodic order | aperiodic order | MATHEMATICS | matchbox manifold | invariant measure | TILING SPACES
Journal Article
Stochastic Processes and their Applications, ISSN 0304-4149, 11/2018, Volume 128, Issue 11, pp. 3656 - 3678
In this paper, we prove a slight, but practically useful, generalisation of a criterion on asymptotic stability for Markov e-chains by T. Szarek, which is... 
Markov chain | Iterated function system | Asymptotic stability | Coupling | Invariant measure | E-property | ERGODICITY | SPACES | EQUATIONS | STATISTICS & PROBABILITY | INVARIANT-MEASURES | CONVERGENCE | SYSTEMS
Journal Article
Discrete and Continuous Dynamical Systems- Series A, ISSN 1078-0947, 09/2019, Volume 39, Issue 9, pp. 5403 - 5429
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 10/2018, Volume 466, Issue 1, pp. 281 - 306
We introduce a new induction scheme for non-uniformly expanding maps f of compact Riemannian manifolds, relying upon ideas of [33] and [10]. We use this... 
Absolutely continuous invariant measures | Nonuniformly expanding | Markov structures | Positive Lyapunov exponents | Inducing schemes | MATHEMATICS, APPLIED | DECAY | MARKOV EXTENSIONS | S-UNIMODAL MAPS | ENDOMORPHISMS | MATHEMATICS | CONTINUOUS INVARIANT-MEASURES | ONE-DIMENSIONAL DYNAMICS | STATISTICAL PROPERTIES | SYSTEMS
Journal Article
Communications in Partial Differential Equations, ISSN 0360-5302, 12/2019, Volume 44, Issue 12, pp. 1466 - 1480
Journal Article
Physics Letters A, ISSN 0375-9601, 02/2017, Volume 381, Issue 8, pp. 821 - 822
A correct version of the proof of Proposition 9 in [1] is given below. Other results of [1] are not affected. •We study the ergodic properties of a non-smooth... 
Absolutely continuous invariant measures | Induced Markov map | Grazing-impact oscillators
Journal Article
Statistics and Probability Letters, ISSN 0167-7152, 11/2016, Volume 118, pp. 70 - 79
We study a dynamical system generalizing continuous iterated function systems and stochastic differential equations disturbed by Poisson noise. The aim of this... 
Invariant measure | Dynamical systems | Law of large numbers | INVARIANT-MEASURES | STABILITY | STATISTICS & PROBABILITY | MARKOV-PROCESSES | Stochastic processes | Analysis
Journal Article
Journal of Number Theory, ISSN 0022-314X, 09/2013, Volume 133, Issue 9, pp. 3183 - 3204
Recently, Edward Burger and his co-authors introduced and studied in Burger et al. (2008) [3] a new class of continued fraction algorithms. In particular they... 
Ergodicity | σ-Finite, infinite invariant measure | Continued fractions | MATHEMATICS | INVARIANT-MEASURES | ROSEN FRACTIONS | sigma-Finite, infinite invariant measure | SHRINKING | Algorithms | Universities and colleges
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.