X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
algorithms (93) 93
mathematics, applied (69) 69
convergence (62) 62
mathematics (57) 57
analysis (36) 36
hilbert space (34) 34
optimization (34) 34
sensors (29) 29
inertial (28) 28
mathematical analysis (27) 27
maximal monotone-operators (27) 27
physics, fluids & plasmas (27) 27
mathematical models (26) 26
operations research & management science (25) 25
mechanics (23) 23
forward-backward algorithm (21) 21
iterative methods (21) 21
methods (20) 20
physics (20) 20
instruments & instrumentation (19) 19
studies (19) 19
turbulence (19) 19
applications of mathematics (18) 18
simulation (18) 18
dynamics (17) 17
computational fluid dynamics (16) 16
mathematics, general (16) 16
chemistry, analytical (15) 15
inertial confinement fusion (15) 15
inertial method (15) 15
fluid dynamics (14) 14
acceleration (13) 13
accelerometers (13) 13
engineering, electrical & electronic (13) 13
inertial sensors (13) 13
splitting (13) 13
47h10 (12) 12
47j25 (12) 12
algorithm (12) 12
fluid flow (12) 12
inertial sensing devices (12) 12
motion (12) 12
numerical analysis (12) 12
oceanography (12) 12
operators (12) 12
proximal method (12) 12
turbulent flow (12) 12
47h05 (11) 11
90c25 (11) 11
approximation (11) 11
computer simulation (11) 11
engineering (11) 11
humans (11) 11
kinematics (11) 11
machine learning (11) 11
proximal point algorithm (11) 11
theory of computation (11) 11
weak-convergence (11) 11
chemical technology (10) 10
equations (10) 10
nonexpansive-mappings (10) 10
research (10) 10
theorems (10) 10
47j20 (9) 9
70 plasma physics and fusion technology (9) 9
classification (9) 9
computer science (9) 9
inertial confinement (9) 9
inertial navigation (9) 9
inertial proximal method (9) 9
male (9) 9
minimization (9) 9
monotone-operators (9) 9
nonexpansive mapping (9) 9
operations research/decision theory (9) 9
plasma (9) 9
sum (9) 9
variational inequality (9) 9
convexity (8) 8
earth sciences (8) 8
fluid mechanics (8) 8
gradient methods (8) 8
hydrodynamics (8) 8
inequalities (8) 8
mathematical methods in physics (8) 8
physics, applied (8) 8
strong-convergence (8) 8
system (8) 8
vortices (8) 8
accuracy (7) 7
adult (7) 7
algebra (7) 7
artificial intelligence (7) 7
calculus of variations and optimal control; optimization (7) 7
convex optimization (7) 7
engineering fluid dynamics (7) 7
female (7) 7
gait (7) 7
inertial algorithm (7) 7
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Applied Mathematics and Computation, ISSN 0096-3003, 04/2015, Volume 256, pp. 472 - 487
We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties... 
Douglas–Rachford splitting | Krasnosel’skiı̆–Mann algorithm | Convex optimization | Primal–dual algorithm | Inertial splitting algorithm | Krasnosel'skiѣ-Mann algorithm Primal-dual algorithm Convex optimization | Douglas-Rachford splitting | MATHEMATICS, APPLIED | Primal-dual algorithm | Krasnosel'skii-Mann algorithm | MINIMIZATION | WEAK-CONVERGENCE | PROXIMAL POINT ALGORITHM | OPERATORS | COMPOSITE
Journal Article
Numerical algorithms, ISSN 1572-9265, 2015, Volume 71, Issue 3, pp. 519 - 540
We introduce and investigate the convergence properties of an inertial forward-backward-forward splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator... 
Primal-dual algorithm | 65K05 | Subdifferential | Numeric Computing | Theory of Computation | Inertial splitting algorithm | Maximally monotone operator | Algorithms | Algebra | Resolvent | Convex optimization | 90C25 | Numerical Analysis | Computer Science | 47H05 | MATHEMATICS, APPLIED | PROXIMAL POINT ALGORITHM | COMPOSITE | CONVERGENCE | MAPPINGS | OPTIMIZATION | OPERATORS | Operators | Splitting | Image processing | Inertial | Inclusions | Optimization | Convergence
Journal Article
Optimization, ISSN 0233-1934, 06/2016, Volume 65, Issue 6, pp. 1293 - 1314
Journal Article
Numerical functional analysis and optimization, ISSN 1532-2467, 2015, Volume 36, Issue 8, pp. 951 - 963
In this article, we incorporate inertial terms in the hybrid proximal-extragradient algorithm and investigate the convergence properties of the resulting iterative scheme designed to find the zeros... 
Enlargement of a maximally monotone operator | Maximally monotone operator | Resolvent | Hybrid proximal point algorithm | Inertial splitting algorithm | MATHEMATICS, APPLIED | MAXIMAL MONOTONE-OPERATORS | CONVERGENCE | ENLARGEMENT | POINT ALGORITHM | Operators (mathematics) | Algorithms | Mathematical models | Functional analysis | Inertial | Iterative methods | Optimization | Convergence
Journal Article
Computational Optimization and Applications, ISSN 0926-6003, 06/2017, Volume 67, Issue 2, pp. 259 - 292
Journal Article
International journal of computer mathematics, ISSN 1029-0265, 2019, Volume 97, Issue 1-2, pp. 482 - 497
In this research, we are interested about the monotone inclusion problems in the scope of the real Hilbert spaces by using an inertial forward-backward splitting algorithm... 
forward-backward algorithm | monotone inclusion problems | Inertial algorithm | inertial splitting algorithm | MATHEMATICS, APPLIED | PROXIMAL METHOD | CONVERGENCE | Splitting | Hilbert space | Algorithms | Image restoration | Inclusions
Journal Article
Journal of fixed point theory and applications, ISSN 1661-7746, 2018, Volume 20, Issue 1, pp. 1 - 17
Journal Article
SIAM journal on optimization, ISSN 1052-6234, 2020, Volume 30, Issue 2, pp. 1451 - 1472
In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators... 
MATHEMATICS, APPLIED | GRADIENT METHODS | forward-backward algorithm | SEARCH | INERTIAL PROXIMAL METHOD | ALGORITHM | CONVERGENCE | SUM | Tseng's method | operator splitting | OPERATORS
Journal Article
Computational optimization and applications, ISSN 1573-2894, 2020, Volume 75, Issue 2, pp. 389 - 422
This paper derives new inexact variants of the Douglas-Rachford splitting method for maximal monotone operators and the alternating direction method of multipliers (ADMM... 
MATHEMATICS, APPLIED | OPERATIONS RESEARCH & MANAGEMENT SCIENCE | MAXIMAL MONOTONE-OPERATORS | Convex optimization | Douglas-Rachford splitting | SHRINKAGE | Inertial algorithms | WEAK-CONVERGENCE | PROXIMAL POINT ALGORITHM | ADMM | Computational geometry | Splitting | Algorithms | Regression analysis | Convexity | Optimization
Journal Article
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, ISSN 1578-7303, 04/2019, Volume 113, Issue 2, pp. 645 - 656
In this paper, we propose a modified forward-backward splitting method using the shrinking projection and the inertial technique for solving the inclusion problem of the sum of two monotone operators... 
Shrinking projection method | MATHEMATICS | 47H10 | Inertial method | Maximal monotone operator | Inclusion problem | Forward-backward algorithm | 47H04
Journal Article
Journal of computational and applied mathematics, ISSN 0377-0427, 2020, Volume 374, p. 112772
Journal Article