X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (8142) 8142
Newspaper Article (93) 93
Book Chapter (90) 90
Dissertation (20) 20
Book / eBook (13) 13
Publication (5) 5
Book Review (4) 4
Streaming Video (2) 2
Web Resource (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
biochemistry & molecular biology (3944) 3944
iron-sulfur proteins - metabolism (2520) 2520
iron-sulfur proteins - chemistry (2263) 2263
oxidation-reduction (1674) 1674
escherichia-coli (1418) 1418
molecular sequence data (1369) 1369
iron-sulfur protein (1358) 1358
amino acid sequence (1355) 1355
iron-sulfur proteins (1259) 1259
models, molecular (1247) 1247
animals (1158) 1158
proteins (1127) 1127
iron-sulfur proteins - genetics (1119) 1119
electron spin resonance spectroscopy (1035) 1035
biophysics (992) 992
research (969) 969
iron-sulfur cluster (956) 956
humans (932) 932
iron-sulfur clusters (919) 919
crystal-structure (882) 882
kinetics (852) 852
iron (842) 842
binding sites (823) 823
enzymes (802) 802
analysis (785) 785
protein conformation (769) 769
electron transport (765) 765
microbiology (749) 749
bacterial proteins - metabolism (705) 705
cell biology (701) 701
iron - metabolism (675) 675
bacterial proteins - chemistry (655) 655
protein (652) 652
catalysis (617) 617
chemistry, inorganic & nuclear (603) 603
protein binding (598) 598
physiological aspects (596) 596
sulfur (589) 589
mutation (573) 573
bacterial proteins - genetics (545) 545
crystallography, x-ray (540) 540
biochemistry (531) 531
mitochondria (530) 530
chemistry, multidisciplinary (528) 528
ferredoxin (528) 528
hydrogenase - chemistry (523) 523
biosynthesis (522) 522
life sciences (512) 512
base sequence (501) 501
electron-transfer (490) 490
escherichia coli - genetics (487) 487
sequence homology, amino acid (478) 478
oxidative stress (460) 460
iron - chemistry (459) 459
ligands (456) 456
chemical properties (428) 428
hydrogenase - metabolism (424) 424
escherichia coli - metabolism (418) 418
oxidoreductases - metabolism (418) 418
mitochondria - metabolism (414) 414
saccharomyces-cerevisiae (406) 406
bacteria (400) 400
electron transfer (393) 393
mutagenesis, site-directed (380) 380
multidisciplinary sciences (374) 374
escherichia coli (368) 368
protein structure, tertiary (352) 352
escherichia coli - enzymology (350) 350
oxidoreductases - chemistry (348) 348
cloning, molecular (338) 338
sequence alignment (337) 337
iron compounds (334) 334
active-site (332) 332
clusters (325) 325
ferredoxins - chemistry (325) 325
purification (324) 324
sulfur compounds (321) 321
catalytic domain (319) 319
metabolism (317) 317
molecular structure (311) 311
binding (309) 309
identification (308) 308
mechanism (308) 308
escherichia coli proteins - metabolism (307) 307
recombinant proteins - metabolism (304) 304
chemistry (300) 300
complex (299) 299
structure (298) 298
spectrophotometry (297) 297
hydrogen-ion concentration (296) 296
biogenesis (295) 295
recombinant proteins - chemistry (294) 294
electrons (290) 290
hydrogenase (290) 290
research article (290) 290
cattle (289) 289
electrochemistry (288) 288
thermodynamics (285) 285
azotobacter-vinelandii (282) 282
sulfur - metabolism (280) 280
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (8347) 8347
Japanese (46) 46
German (9) 9
Chinese (6) 6
French (5) 5
Russian (5) 5
Polish (2) 2
Czech (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


The Journal of biological chemistry, ISSN 1083-351X, 2017, Volume 292, Issue 31, pp. 12754 - 12763
The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion... 
4FE-4S CLUSTERS | acyl carrier protein (ACP) | cysteine desulfurase | fatty acid metabolism | BIOCHEMISTRY & MOLECULAR BIOLOGY | MONOTHIOL GLUTAREDOXINS FUNCTION | FUNCTIONAL-CHARACTERIZATION | glutaredoxin | mitochondrial disease | frataxin | ACYL CARRIER PROTEIN | ferredoxin | metal biology | chaperone | INTERACTING PROTEIN | ASSEMBLY MACHINERY | AZOTOBACTER-VINELANDII (NIF)ISCA | FE-S PROTEINS | SCAFFOLD PROTEIN | lipoic acid | Mitochondria - enzymology | Adrenodoxin - genetics | Species Specificity | Humans | Protein Multimerization | Adrenodoxin - metabolism | Iron-Sulfur Proteins - genetics | Iron-Binding Proteins - chemistry | Mitochondrial Proteins - genetics | Iron-Sulfur Proteins - chemistry | Iron-Binding Proteins - metabolism | Mitochondrial Proteins - metabolism | Apoenzymes - metabolism | Sulfurtransferases - chemistry | Acyl Carrier Protein - metabolism | Models, Molecular | Sulfurtransferases - genetics | Mitochondria - metabolism | Saccharomyces cerevisiae Proteins - genetics | Protein Folding | Protein Transport | Gene Expression Regulation, Enzymologic | Acyl Carrier Protein - chemistry | Animals | Models, Biological | Acyl Carrier Protein - genetics | Apoenzymes - genetics | Mitochondrial Proteins - chemistry | Saccharomyces cerevisiae Proteins - metabolism | Apoenzymes - chemistry | Adrenodoxin - chemistry | Iron-Binding Proteins - genetics | Protein Conformation | Iron-Sulfur Proteins - metabolism | Sulfurtransferases - metabolism | Saccharomyces cerevisiae Proteins - chemistry | Minireviews
Journal Article
Journal of Biological Chemistry, ISSN 0021-9258, 2017, Volume 292, Issue 31, pp. 12744 - 12753
.... A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins... 
HSPA9 | iron-response element (IRE) | mitochondrial respiratory chain complex | RESPIRATORY-CHAIN | ELEMENT-BINDING-PROTEIN | BIOCHEMISTRY & MOLECULAR BIOLOGY | FE-S CLUSTERS | ESCHERICHIA-COLI | HSC20 | metalloenzyme | HEAVY-SUBUNIT | RESPONSIVE ELEMENT | CYSTEINE DESULFURASE | MESSENGER-RNA | iron-sulfur protein | iron-sulfur cluster biogenesis | SCAFFOLD PROTEIN | TARGETED DELETION | energy metabolism | ISCU | Iron Regulatory Protein 1 - physiology | Electron Transport | Humans | Protein Multimerization | Homeostasis | Succinate Dehydrogenase - biosynthesis | Iron-Binding Proteins - chemistry | Iron-Regulatory Proteins - biosynthesis | Succinate Dehydrogenase - chemistry | Iron-Sulfur Proteins - chemistry | Molecular Chaperones - chemistry | Apoenzymes - metabolism | Iron-Regulatory Proteins - physiology | Iron-Regulatory Proteins - chemistry | Iron-Sulfur Proteins - biosynthesis | Carbon-Sulfur Lyases - physiology | HSP70 Heat-Shock Proteins - chemistry | Protein Interaction Domains and Motifs | HSP70 Heat-Shock Proteins - biosynthesis | Molecular Chaperones - biosynthesis | Iron-Binding Proteins - physiology | Response Elements | Iron Regulatory Protein 1 - chemistry | Carbon-Sulfur Lyases - biosynthesis | Mitochondrial Proteins - physiology | Models, Molecular | Mitochondrial Proteins - biosynthesis | Molecular Chaperones - physiology | Iron-Binding Proteins - biosynthesis | Protein Folding | Iron-Sulfur Proteins - physiology | Gene Expression Regulation, Enzymologic | Animals | Iron - physiology | Mitochondrial Proteins - chemistry | Apoenzymes - chemistry | HSP70 Heat-Shock Proteins - physiology | Succinate Dehydrogenase - physiology | Carbon-Sulfur Lyases - chemistry | Iron Regulatory Protein 1 - biosynthesis | Minireviews
Journal Article
Journal of Biological Chemistry, ISSN 0021-9258, 2017, Volume 292, Issue 33, pp. 13879 - 13889
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family... 
REPLICATION | HEPATITIS-C VIRUS | BIOGENESIS | DNA METABOLISM | BIOCHEMISTRY & MOLECULAR BIOLOGY | WEST NILE VIRUS | MMS19 | IDENTIFICATION | MATURATION | AMPHIPATHIC ALPHA-HELIX | INHIBIT | Apoproteins - chemistry | Immunoprecipitation | Transcription Factors - chemistry | Humans | Iron-Sulfur Proteins - genetics | Iron-Sulfur Proteins - chemistry | Recombinant Fusion Proteins - metabolism | Metallochaperones - chemistry | RNA Interference | HEK293 Cells | Carrier Proteins - chemistry | Protein Interaction Domains and Motifs | Metallochaperones - antagonists & inhibitors | Nuclear Proteins - genetics | Peptide Fragments - genetics | Apoproteins - metabolism | Recombinant Proteins - metabolism | Peptide Fragments - metabolism | Iron - chemistry | Carrier Proteins - antagonists & inhibitors | Recombinant Proteins - chemistry | Nuclear Proteins - metabolism | Transcription Factors - antagonists & inhibitors | Recombinant Fusion Proteins - chemistry | Transcription Factors - genetics | Nuclear Proteins - chemistry | Iron - metabolism | Metallochaperones - genetics | Proteins - genetics | Transcription Factors - metabolism | Carrier Proteins - genetics | Iron Radioisotopes | Peptide Fragments - chemistry | Carrier Proteins - metabolism | Proteins - metabolism | Models, Biological | Nuclear Proteins - antagonists & inhibitors | Apoproteins - genetics | Iron-Sulfur Proteins - metabolism | Metallochaperones - metabolism | Mutation | Proteins - chemistry | Amino Acid Substitution | iron–sulfur protein | molecular cell biology | metal biology | iron | sulfur | Cia targeting complex | viperin | biogenesis | interferon | Cell Biology
Journal Article
The Journal of biological chemistry, ISSN 1083-351X, 2017, Volume 292, Issue 31, pp. 12764 - 12771
.... Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones... 
metalloprotein | HUMAN BOLA2 | HEME-BIOSYNTHESIS | DEOXYHYPUSINE HYDROXYLASE | BolA2 | BIOCHEMISTRY & MOLECULAR BIOLOGY | glutaredoxin | SACCHAROMYCES-CEREVISIAE | iron metabolism | molecular chaperone | PHP4 FUNCTION | FERRITIN DEGRADATION | poly C-binding protein | IN-VIVO | GENE-EXPRESSION | iron | iron-sulfur protein | SULFUR CLUSTER | MONOTHIOL GLUTAREDOXIN | Molecular Chaperones - metabolism | Humans | Protein Multimerization | Iron-Sulfur Proteins - chemistry | Molecular Chaperones - chemistry | Nuclear Receptor Coactivators - chemistry | Autophagy | Apoferritins - metabolism | Ferritins - metabolism | Cation Transport Proteins - metabolism | Apoenzymes - metabolism | Carrier Proteins - chemistry | Dimerization | Nuclear Receptor Coactivators - metabolism | Erythroid Precursor Cells - cytology | RNA-Binding Proteins - chemistry | Heterogeneous-Nuclear Ribonucleoproteins - metabolism | Models, Molecular | Apoferritins - chemistry | Iron - metabolism | Protein Transport | Animals | Carrier Proteins - metabolism | Proteins - metabolism | Models, Biological | Heterogeneous-Nuclear Ribonucleoproteins - chemistry | Apoenzymes - chemistry | Erythroid Precursor Cells - metabolism | Cytosol - metabolism | Iron-Sulfur Proteins - metabolism | Proteins - chemistry | Cation Transport Proteins - chemistry | Ferritins - chemistry | RNA-Binding Proteins - metabolism | iron–sulfur protein | Minireviews
Journal Article
Nature (London), ISSN 1476-4687, 2010, Volume 468, Issue 7325, pp. 790 - 795
Journal Article
Journal of Biological Chemistry, ISSN 0021-9258, 10/2014, Volume 289, Issue 41, pp. 28070 - 28086
.... However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored... 
IRON-SULFUR CLUSTER | MITOCHONDRIAL-MEMBRANE PROTEIN | OXIDATIVE STRESS | AZOTOBACTER-VINELANDII (NIF)ISCA | BIOCHEMISTRY & MOLECULAR BIOLOGY | ESCHERICHIA-COLI | NITRIC-OXIDE | 2FE-2S CLUSTER | FUNCTIONAL-CHARACTERIZATION | SCAFFOLD PROTEIN | INSULIN SENSITIVITY | Humans | Homeostasis | Mitochondrial Proteins - genetics | Mitochondrial Membrane Transport Proteins - genetics | Hydrogen Peroxide - chemistry | Mitochondrial Proteins - metabolism | Mitochondrial Membranes - chemistry | Escherichia coli - metabolism | Protein Stability | Mitochondria - chemistry | Protein Structure, Tertiary | Recombinant Proteins - metabolism | Iron Regulatory Protein 1 - genetics | Mitochondrial Membrane Transport Proteins - chemistry | Mitochondrial Membrane Transport Proteins - metabolism | Nitric Oxide - chemistry | Oxidation-Reduction | Signal Transduction | Iron Regulatory Protein 1 - chemistry | Gene Expression Regulation | Recombinant Proteins - chemistry | Mice, Transgenic | Mitochondria - metabolism | Recombinant Proteins - genetics | Iron - metabolism | Protein Folding | Hep G2 Cells | Mitochondrial Membranes - metabolism | Protein Transport | Animals | Iron Regulatory Protein 1 - metabolism | Escherichia coli - genetics | Mitochondrial Proteins - chemistry | Mice | HeLa Cells | Organic chemistry | Chemical Sciences | Mitochondria | Iron Metabolism | Oxidative Stress | MitoNEET | Fe-S Transfer | Small Interfering RNA (siRNA) | Iron-Sulfur Protein | Nitric Oxide | Iron Regulatory Protein 1 | Protein Degradation | Cell Biology
Journal Article
FEBS Letters, ISSN 0014-5793, 12/2016, Volume 590, Issue 24, pp. 4531 - 4540
.... The mechanism of Fe–S cluster biogenesis involves multiple proteins in a complex pathway. Cluster biosynthesis primarily occurs in the mitochondria, but key Fe... 
[2Fe‐2S] cluster transfer | iron–sulfur cluster | Nfu | glutaredoxin | IscU | [2Fe-2S] cluster transfer | HUMAN NFU | iron-sulfur cluster | BIOCHEMISTRY & MOLECULAR BIOLOGY | PROTEIN BIOGENESIS | MATURATION | SACCHAROMYCES-CEREVISIAE | 4FE-4S CLUSTER | CELL BIOLOGY | MONOTHIOL GLUTAREDOXINS | BIOPHYSICS | BIOSYNTHESIS | 2FE-2S CLUSTER | SCAFFOLD PROTEIN | Apoproteins - chemistry | Humans | Bacterial Proteins - chemistry | Iron-Sulfur Proteins - genetics | Iron-Sulfur Proteins - chemistry | Oxidoreductases - chemistry | Saccharomyces cerevisiae - metabolism | Biological Transport | Escherichia coli - metabolism | Carrier Proteins - chemistry | Thermotoga maritima - chemistry | Thermotoga maritima - metabolism | Apoproteins - metabolism | Sulfur - chemistry | Recombinant Proteins - metabolism | Sulfur - metabolism | Gene Expression | Oxidoreductases - metabolism | Oxidoreductases - genetics | Iron - chemistry | Bacterial Proteins - genetics | Recombinant Proteins - chemistry | Recombinant Proteins - genetics | Saccharomyces cerevisiae Proteins - genetics | Iron - metabolism | Saccharomyces cerevisiae - chemistry | Cytosol - chemistry | Carrier Proteins - genetics | Carrier Proteins - metabolism | Escherichia coli - genetics | Saccharomyces cerevisiae Proteins - metabolism | Apoproteins - genetics | Bacterial Proteins - metabolism | Cytosol - metabolism | Iron-Sulfur Proteins - metabolism | Kinetics | Saccharomyces cerevisiae Proteins - chemistry
Journal Article
The FEBS Journal, ISSN 1742-464X, 02/2019, Volume 286, Issue 3, pp. 495 - 506
Frataxins form an interesting family of iron‐binding proteins with an almost unique fold and are highly conserved from bacteria to primates... 
iron–sulfur clusters | Friedreich's ataxia | structural biology | BACKBONE DYNAMICS | ACTIVATION | STABILITY | BIOCHEMISTRY & MOLECULAR BIOLOGY | METAL-BINDING | CYAY | NFS1 | INTERACTING PROTEIN | BIOGENESIS | iron-sulfur clusters | BACTERIAL FRATAXIN | Fungal Proteins - chemistry | Species Specificity | Humans | Iron-Sulfur Proteins - genetics | Crystallography, X-Ray | Iron-Binding Proteins - chemistry | Iron-Sulfur Proteins - chemistry | Iron-Binding Proteins - metabolism | Thermodynamics | Carbon-Sulfur Lyases - genetics | Cloning, Molecular | Escherichia coli - metabolism | Protein Interaction Domains and Motifs | Protein Stability | Binding Sites | Recombinant Proteins - metabolism | Amino Acid Sequence | Protein Conformation, alpha-Helical | Chaetomium - chemistry | Gene Expression | Iron - chemistry | Models, Molecular | Recombinant Proteins - chemistry | Escherichia coli Proteins - metabolism | Recombinant Proteins - genetics | Fungal Proteins - genetics | Static Electricity | Carbon-Sulfur Lyases - metabolism | Iron - metabolism | Chaetomium - genetics | Protein Folding | Sequence Homology, Amino Acid | Chaetomium - metabolism | Sequence Alignment | Protein Conformation, beta-Strand | Escherichia coli - genetics | Escherichia coli Proteins - genetics | Protein Binding | Iron-Binding Proteins - genetics | Iron-Sulfur Proteins - metabolism | Kinetics | Carbon-Sulfur Lyases - chemistry | Escherichia coli Proteins - chemistry | Fungal Proteins - metabolism | Sulfur compounds | Nervous system diseases | Iron compounds | Binding proteins | Protein binding | Binding | Regulators | Neurodegenerative diseases | Structural stability | Iron | Thermophilic fungi | Proteins | Neurological diseases | Thermophilic bacteria | Frataxin | Clusters | Primates | Ataxia | Sulfur | Structural analysis | Structure-function relationships | Original
Journal Article
Nature (London), ISSN 1476-4687, 2012, Volume 482, Issue 7386, pp. 501 - 506
Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling... 
THERMOCOCCUS-KODAKARAENSIS | CRYSTAL-STRUCTURE | MULTIDISCIPLINARY SCIENCES | NO-GO DECAY | X-RAY-STRUCTURE | FREE PROTEIN-SYNTHESIS | ELECTRON-MICROSCOPY | MESSENGER-RNA DECAY | TRANSLATION TERMINATION | ATP-BINDING | 80S RIBOSOME | Endoribonucleases - chemistry | Pyrococcus furiosus - chemistry | Pyrococcus furiosus - metabolism | Ribosomes - metabolism | Iron-Sulfur Proteins - chemistry | Cell Cycle Proteins - chemistry | Saccharomyces cerevisiae - metabolism | Multiprotein Complexes - metabolism | ATP-Binding Cassette Transporters - chemistry | ATP-Binding Cassette Transporters - metabolism | Protein Stability | Protein Structure, Tertiary | Movement | Endoribonucleases - metabolism | Cell Cycle Proteins - metabolism | Ribosomes - chemistry | Models, Molecular | Nuclear Proteins - metabolism | Nuclear Proteins - chemistry | Peptide Termination Factors - metabolism | Saccharomyces cerevisiae - chemistry | Cryoelectron Microscopy | Multiprotein Complexes - chemistry | Ribosomes - ultrastructure | Saccharomyces cerevisiae Proteins - metabolism | Protein Binding | Iron-Sulfur Proteins - metabolism | Peptide Termination Factors - chemistry | Evolution, Molecular | Saccharomyces cerevisiae Proteins - chemistry | Eukaryotes | Ribosomes | Physiological aspects | Protein biosynthesis | Research | Structure | Archaeabacteria | Proteins | Ribonucleic acid--RNA | Transfer RNA
Journal Article
Journal of Biological Chemistry, ISSN 0021-9258, 09/2016, Volume 291, Issue 40, pp. 21296 - 21321
Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria... 
N-HYDROXYSUCCINIMIDE ESTERS | CYSTEINE DESULFURASE | X-RAY CRYSTALLOGRAPHY | BIOCHEMISTRY & MOLECULAR BIOLOGY | CHEMICAL CROSS-LINKING | ESCHERICHIA-COLI | ELECTRON-MICROSCOPY | SCAFFOLD PROTEIN | YEAST FRATAXIN | BINDING-SITES | FRIEDREICH ATAXIA | Recombinant Proteins - metabolism | Humans | Iron-Sulfur Proteins - genetics | Recombinant Proteins - chemistry | Iron-Binding Proteins - chemistry | Iron-Regulatory Proteins - metabolism | Mitochondrial Proteins - genetics | Recombinant Proteins - genetics | Iron-Sulfur Proteins - chemistry | Carbon-Sulfur Lyases - metabolism | Iron-Binding Proteins - metabolism | Iron-Regulatory Proteins - genetics | Molecular Dynamics Simulation | Carbon-Sulfur Lyases - genetics | Mitochondrial Proteins - metabolism | Mitochondrial Proteins - chemistry | Iron-Binding Proteins - genetics | Iron-Regulatory Proteins - chemistry | Iron-Sulfur Proteins - metabolism | Carbon-Sulfur Lyases - chemistry | Molecular Bases of Disease | iron-sulfur protein | Friedreich ataxia | protein complex | mitochondria | frataxin | Biological Sciences | Basic Medicine | Other Basic Medicine | Naturvetenskap | Andra medicinska och farmaceutiska grundvetenskaper | Medical and Health Sciences | Biokemi och molekylärbiologi | Medicin och hälsovetenskap | Medicinska och farmaceutiska grundvetenskaper | Biochemistry and Molecular Biology | Biologi | Natural Sciences
Journal Article