X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics, applied (507) 507
chemotaxis (417) 417
mathematics (388) 388
keller-segel system (319) 319
global existence (273) 273
boundedness (248) 248
blow-up (224) 224
keller-segel model (220) 220
equations (167) 167
aggregation (138) 138
logistic source (127) 127
existence (121) 121
diffusion (114) 114
nonlinear diffusion (100) 100
system (84) 84
mathematical models (80) 80
behavior (76) 76
analysis (75) 75
mathematical analysis (69) 69
stabilization (68) 68
analysis of pdes (63) 63
mathematics - analysis of pdes (57) 57
sensitivity (57) 57
weak solutions (57) 57
boundary conditions (54) 54
keller-segel (53) 53
time blow-up (53) 53
physics, mathematical (52) 52
critical mass (47) 47
92c17 (45) 45
pattern-formation (45) 45
stability (44) 44
chemotaxis model (41) 41
convergence (41) 41
modeling chemotaxis (41) 41
well-posedness (39) 39
35k55 (38) 38
keller–segel system (38) 38
navier-stokes equations (38) 38
singular sensitivity (37) 37
degenerate diffusion (35) 35
dynamics (35) 35
keller–segel model (35) 35
attraction-repulsion (33) 33
tensor-valued sensitivity (33) 33
asymptotic behavior (32) 32
chemotaxis system (32) 32
decay (31) 31
uniqueness (31) 31
bacteria (30) 30
keller-segel models (30) 30
partial differential equations (29) 29
smooth boundaries (28) 28
computer simulation (27) 27
large time behavior (27) 27
navier-stokes (27) 27
mathematics, general (26) 26
traveling-waves (26) 26
classical-solutions (25) 25
fluid dynamics (25) 25
nonlinearity (25) 25
parabolic-elliptic system (25) 25
stokes system (25) 25
boundary value problems (24) 24
cell behavior (24) 24
quantitative biology (24) 24
35q92 (23) 23
collapse (23) 23
domains (22) 22
prevention (22) 22
asymptotic properties (21) 21
blowup (21) 21
keller–segel (21) 21
mathematical & computational biology (21) 21
navier-stokes system (21) 21
[math.math-ap]mathematics [math]/analysis of pdes [math.ap] (20) 20
asymptotic-behavior (20) 20
attraction–repulsion (20) 20
nonlinear stability (20) 20
pattern formation (20) 20
theoretical, mathematical and computational physics (20) 20
35b40 (19) 19
approximation (19) 19
cancer invasion (19) 19
cauchy problem (19) 19
large-time behavior (19) 19
parabolic-parabolic type (18) 18
[ math.math-ap ] mathematics [math]/analysis of pdes [math.ap] (17) 17
asymptotic stability (17) 17
finite-time blowup (17) 17
growth (17) 17
keller-segel equation (17) 17
patterns (17) 17
r-2 (17) 17
regularity (17) 17
systems (17) 17
tissue (17) 17
finite (16) 16
free energy (16) 16
gradient flow (16) 16
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Differential Equations, ISSN 0022-0396, 12/2015, Volume 259, Issue 12, pp. 7578 - 7609
This paper deals with a boundary-value problem in two-dimensional smoothly bounded domains for the coupled Keller–Segel–Stokes system{nt+u⋅∇n=Δn−∇⋅(nS(x,n,c)⋅∇c... 
Keller–Segel–Stokes system | Global existence | Tensor-valued sensitivity | Boundedness | Keller-Segel-Stokes system | CHEMOTAXIS-FLUID MODEL | LP | STABILIZATION | EQUATIONS | NONLINEAR DIFFUSION | MATHEMATICS | BLOW-UP | WEAK SOLUTIONS | DOMAINS
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 09/2016, Volume 261, Issue 6, pp. 3414 - 3462
... is the inner normal derivative at ∂Ω. This problem is equivalent to the stationary Keller–Segel system from chemotaxis... 
Boundary concentration | Keller–Segel system | MATHEMATICS | Keller-Segel system | PERTURBED NEUMANN PROBLEM | STEADY-STATES | CHEMOTAXIS | CURVES
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 10/2015, Volume 430, Issue 1, pp. 585 - 591
This paper deals with the higher dimension quasilinear parabolic–parabolic Keller–Segel system involving a source term of logistic type ut... 
Logistic source | Global existence | Keller–Segel system | Chemotaxis | Boundedness | Keller-Segel system | MATHEMATICS | MATHEMATICS, APPLIED | CHEMOTAXIS SYSTEM | EQUATIONS | MODELING CHEMOTAXIS | DOMAINS | TIME BLOW-UP
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 11/2016, Volume 443, Issue 1, pp. 445 - 452
We consider a parabolic–parabolic Keller–Segel system of chemotaxis model with singular sensitivity: ut=Δu−χ∇⋅(uv∇v), vt=kΔv−v... 
Keller–Segel system | Chemotaxis | Singular sensitivity | Boundedness | MATHEMATICS | MATHEMATICS, APPLIED | Keller-Segel system
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 03/2017, Volume 447, Issue 1, pp. 499 - 528
In this paper, we consider the following Keller–Segel(–Navier)–Stokes system(⋆){nt+u⋅∇n=Δn−∇⋅(nχ(c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω... 
Navier–Stokes | Global existence | Stokes | Keller–Segel | Boundedness | MATHEMATICS, APPLIED | STOKES SYSTEM | MODEL | MATHEMATICS | SINGULAR SENSITIVITY | LOGISTIC SOURCE | Navier-Stokes | PARABOLIC CHEMOTAXIS SYSTEM | BLOW-UP | Keller-Segel | AGGREGATION
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 07/2017, Volume 263, Issue 2, pp. 1477 - 1521
We prove the time-global existence of solutions of the degenerate Keller–Segel system in higher dimensions, under the assumption that the mass of the first component is below a certain critical value... 
Degenerate diffusion | Wasserstein distance | Gradient flows | Chemotaxis | Keller–Segel | Keller-Segel | GLOBAL EXISTENCE | BEHAVIOR | EQUATIONS | MODEL | MATHEMATICS | CRITICAL MASS | HIGHER DIMENSIONS | ASYMPTOTICS | BLOW-UP
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 06/2015, Volume 426, Issue 1, pp. 105 - 124
In this study, we consider an attraction–repulsion chemotaxis system{ut=Δu−∇⋅(χu∇v)+∇⋅(ξu∇w),x∈Ω,t>0,vt=Δv+αu−βv,x∈Ω,t>0,wt=Δw+γu−δw,x∈Ω,t>0 with homogeneous Neumann boundary conditions... 
Asymptotic stability | Chemotaxis | Boundedness | Attraction–repulsion | Attraction-repulsion | MATHEMATICS, APPLIED | GLOBAL EXISTENCE | SENSITIVITY | MODEL | MATHEMATICS | KELLER-SEGEL SYSTEM | EQUILIBRIA | BLOW-UP | AGGREGATION
Journal Article
Nonlinear Analysis, ISSN 0362-546X, 03/2020, Volume 192, p. 111698
Keller–Segel systems in two and three space dimensions with an additional cross-diffusion term in the equation for the chemical concentration are analyzed... 
Higher-order estimates | Numerical simulations | Asymptotic analysis | Keller–Segel model | Vanishing cross-diffusion limit | Entropy method | MATHEMATICS | Keller-Segel model | MATHEMATICS, APPLIED | GLOBAL EXISTENCE | CHEMOTAXIS | PREVENTING BLOW-UP | MODEL | Diffusion rate | Parameters | Elliptic functions | Convergence
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 02/2015, Volume 258, Issue 4, pp. 1158 - 1191
We prove existence of global weak solutions to the chemotaxis systemut=Δu−∇⋅(u∇v)+κu−μu2vt=Δv−v+u under homogeneous Neumann boundary conditions in a smooth... 
Logistic source | Weak solutions | Chemotaxis | Eventual smoothness | Existence | Secondary | Primary | EQUATIONS | BOUNDEDNESS | ATTRACTOR | MODEL | GROWTH SYSTEM | MATHEMATICS | KELLER-SEGEL SYSTEM | DIMENSION | GLOBAL-SOLUTIONS
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 09/2017, Volume 263, Issue 5, pp. 2606 - 2629
The coupled quasilinear Keller–Segel–Navier–Stokes system(KSNF){nt+u⋅∇n=Δnm−∇⋅(n∇c),x∈Ω,t>0,ct+u⋅∇c=Δc−c+n,x∈Ω,t>0,ut+κ(u⋅∇)u+∇P=Δu+n∇ϕ,x∈Ω,t>0,∇⋅u=0,x∈Ω,t>0... 
Navier–Stokes system | Global existence | Nonlinear diffusion | Keller–Segel model | EXISTENCE | Keller-Segel model | TENSOR-VALUED SENSITIVITY | STABILIZATION | BOUNDEDNESS | MODEL | FLUID EQUATIONS | Navier-Stokes system | MATHEMATICS | LINEAR CHEMOTAXIS SYSTEM | LOGISTIC SOURCE | CHEMOATTRACTANT | BLOW-UP | Fluid dynamics
Journal Article
Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, 8/2016, Volume 55, Issue 4, pp. 1 - 39
Journal Article
Applied Mathematics Letters, ISSN 0893-9659, 09/2014, Volume 35, Issue 1, pp. 29 - 34
We consider the system ut=Δu−∇⋅(χu∇v)+∇⋅(ξu∇w),τvt=Δv+αu−βv,τwt=Δw+γu−δw, which has been proposed to describe the aggregation of microglia... 
Aggregation | Parabolic | Elliptic | Alzheimer | Keller–Segel model | Blow-up | Keller-Segel model | MATHEMATICS, APPLIED | DISEASE SENILE PLAQUES | Mathematical analysis | Agglomeration
Journal Article
Journal of Evolution Equations, ISSN 1424-3199, 6/2018, Volume 18, Issue 2, pp. 561 - 581
...–fluid system $$\begin{aligned} n_t + u\cdot \nabla n&= \Delta n - \chi \nabla \cdot \left( \frac{n}{c}\nabla c\right) \\ c_t + u\cdot \nabla c&= \Delta c - c + n... 
Secondary 35Q30 | Analysis | Chemotaxis–fluid | Global existence | Navier–Stokes | Mathematics | 92C17 | Primary 35A01 | Singular sensitivity | Keller–Segel | 35Q92 | 35A09 | EXISTENCE | TENSOR-VALUED SENSITIVITY | MATHEMATICS, APPLIED | BEHAVIOR | STABILIZATION | BOUNDEDNESS | NAVIER-STOKES SYSTEM | NONLINEAR DIFFUSION | MATHEMATICS | Navier-Stokes | PARABOLIC CHEMOTAXIS SYSTEM | Chemotaxis-fluid | GLOBAL WEAK SOLUTIONS | Keller-Segel
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 11/2017, Volume 263, Issue 9, pp. 6115 - 6142
We consider a two dimensional parabolic–elliptic Keller–Segel equation with a fractional diffusion of order α∈(0,2) and a logistic term. In the case of an... 
Logistic source | Keller–Segel system | Global-in-time smoothness | Fractional dissipation | Active scalar equations | Nonlocal maximum principle | EXISTENCE | AGGREGATION EQUATION | INSTABILITY | CHEMOTAXIS | MODEL | DIFFUSION EQUATION | GLOBAL WELL-POSEDNESS | MATHEMATICS | Keller-Segel system | REGULARITY | DYNAMICS | QUASI-GEOSTROPHIC EQUATION
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 12/2016, Volume 261, Issue 12, pp. 6883 - 6914
The coupled chemotaxis fluid system(⋆){nt=Δn−∇⋅(nS(x,n,c)⋅∇c)−u⋅∇n,(x,t)∈Ω×(0,T),ct=Δc−nc−u⋅∇c,(x,t)∈Ω×(0,T),ut=Δu−κ(u⋅∇)u+∇P+n∇ϕ,(x,t)∈Ω×(0,T),∇⋅u=0,(x,t)∈Ω×(0... 
Navier–Stokes | Global existence | Chemotaxis | Large time behavior | EXISTENCE | CHEMOTAXIS-STOKES SYSTEM | STABILIZATION | EQUATIONS | BOUNDEDNESS | NONLINEAR DIFFUSION | DEPENDENT SENSITIVITY | MATHEMATICS | KELLER-SEGEL SYSTEM | MODELS | Navier-Stokes | WEAK SOLUTIONS
Journal Article
SIAM Journal on Mathematical Analysis, ISSN 0036-1410, 2015, Volume 47, Issue 4, pp. 3092 - 3115
The chemotaxis system u(t) = Delta u - del. (uS(x, u, v) . del v); v(t) = Delta v - uf(v) (referred to as (star) in this abstract), for the density u... 
Generalized solution | Global existence | Chemotaxis | MATHEMATICS, APPLIED | global existence | KELLER-SEGEL SYSTEM | MODELS | STABILIZATION | EQUATIONS | BOUNDEDNESS | DIFFUSION | BLOW-UP | generalized solution | chemotaxis
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 06/2015, Volume 258, Issue 12, pp. 4275 - 4323
In this paper, we are concerned with a general class of quasilinear parabolic–parabolic chemotaxis systems with/without growth source, under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn with n≥2... 
Characterizations | Global existence | Chemotaxis systems | Growth source | Boundedness | Secondary | Primary | BEHAVIOR | SENSITIVITY | MODEL | ATTRACTOR | MATHEMATICS | KELLER-SEGEL SYSTEM | LOGISTIC SOURCE | TIME BLOW-UP
Journal Article
Applied Mathematics Letters, ISSN 0893-9659, 02/2017, Volume 64, pp. 1 - 7
We consider the parabolic–elliptic chemotaxis-growth system {ut=Δu−χ∇⋅(um∇v)+μu(1−uα),x∈Ω,t>0,−Δv+v=uγ,x∈Ω,t>0, under no-flux boundary conditions in a smoothly bounded domain... 
Chemotaxis-growth system | Critical parameter condition | Boundedness | MATHEMATICS, APPLIED | KELLER-SEGEL SYSTEM | LOGISTIC SOURCE | GLOBAL-SOLUTIONS
Journal Article