X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics, applied (105) 105
mathematics (99) 99
klein-gordon-maxwell (88) 88
existence (79) 79
solitary waves (79) 79
equations (67) 67
variational methods (48) 48
ground-state solutions (37) 37
nonexistence (35) 35
klein-gordon-maxwell system (30) 30
schrodinger-poisson system (27) 27
bound-states (26) 26
positive solutions (26) 26
system (25) 25
nonlinearity (23) 23
analysis (20) 20
critical growth (16) 16
klein–gordon–maxwell system (15) 15
schrödinger-poisson system (14) 14
equation (13) 13
multiplicity (13) 13
schrödinger–poisson system (13) 13
standing waves (13) 13
mathematical analysis (11) 11
calculus (10) 10
concentration-compactness principle (10) 10
elliptic-equations (10) 10
ground state (10) 10
ground state solution (10) 10
mathematics, general (10) 10
mountain pass theorem (10) 10
r-3 (10) 10
scalar field-equations (10) 10
variational method (10) 10
35j20 (9) 9
atoms (9) 9
ground-state (9) 9
multiple solutions (9) 9
potentials (9) 9
stability (9) 9
states (9) 9
thomas-fermi (9) 9
waves (9) 9
35j50 (8) 8
35j60 (8) 8
ground state solutions (8) 8
schrodinger-maxwell equations (8) 8
schrodinger-poisson systems (8) 8
spheres (8) 8
35q40 (7) 7
mathematics - analysis of pdes (7) 7
nehari manifold (7) 7
nonhomogeneous (7) 7
partial differential equations (7) 7
physics, mathematical (7) 7
sign-changing solutions (7) 7
35q55 (6) 6
ekeland's variational principle (6) 6
semiclassical solutions (6) 6
35j65 (5) 5
concentration (5) 5
energy industry (5) 5
hartree (5) 5
klein-gordon-maxwell equations (5) 5
klein-gordon-maxwell systems (5) 5
mathematical methods in physics (5) 5
molecules (5) 5
pohozaev identity (5) 5
positive solution (5) 5
r-n (5) 5
schrodinger-poisson equations (5) 5
schrodinger-poisson problem (5) 5
schrödinger-poisson systems (5) 5
critical point (4) 4
ekeland’s variational principle (4) 4
electrostatic field (4) 4
elliptic problems (4) 4
engineering (4) 4
klein-gordon equation (4) 4
lyapunov-schmidt reduction (4) 4
manifolds (4) 4
mathematical physics (4) 4
mechanics (4) 4
scalar curvature (4) 4
schrodinger equation (4) 4
schrodinger-poisson equation (4) 4
schrödinger-maxwell equations (4) 4
schrödinger–maxwell equations (4) 4
semiclassical states (4) 4
state (4) 4
superlinear (4) 4
symmetry (4) 4
systems (4) 4
theorems (4) 4
theoretical and applied mechanics (4) 4
theoretical, mathematical and computational physics (4) 4
uniqueness (4) 4
35b40 (3) 3
35j47 (3) 3
35j61 (3) 3
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Applied Mathematics Letters, ISSN 0893-9659, 04/2019, Volume 90, pp. 188 - 193
This paper is concerned with the following Klein–Gordon–Maxwell system −△u+V(x)u−(2ω+ϕ)ϕu=f(x,u),x∈R3,△ϕ=(ω+ϕ)u2,x∈R3,where ω>0 is a constant, V and f are... 
Variational methods | Klein–Gordon–Maxwell system | Geometrically distinct solutions | EQUATIONS | MATHEMATICS, APPLIED | Klein-Gordon-Maxwell system | GROUND-STATE SOLUTIONS
Journal Article
Applied Mathematics Letters, ISSN 0893-9659, 04/2019, Volume 90, pp. 175 - 180
In this paper, we study the following Klein–Gordon–Maxwell system −Δu+(λa(x)+1)u−(2ω+ϕ)ϕu=f(x,u),inR3,−Δϕ=−(ω+ϕ)u2,inR3.Using variational methods, we obtain... 
Klein–Gordon–Maxwell system | Ground state solution | Variational methods | Steep potential well | MATHEMATICS, APPLIED | Klein-Gordon-Maxwell system
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 11/2017, Volume 455, Issue 2, pp. 1152 - 1177
In this paper, we consider the critical Klein–Gordon–Maxwell system with external potential. When the potential well is steep, by using the penalization... 
Klein–Gordon–Maxwell system | Variational method | Critical growth | EXISTENCE | MATHEMATICS, APPLIED | EXPONENTS | MULTIPLICITY | NONEXISTENCE | POSITIVE SOLUTIONS | WELL | GROUND-STATE SOLUTIONS | NONLINEAR SCHRODINGER-EQUATION | MATHEMATICS | ELLIPTIC PROBLEMS | SOLITARY WAVES | Klein-Gordon-Maxwell system
Journal Article
Zeitschrift für angewandte Mathematik und Physik, ISSN 0044-2275, 12/2014, Volume 65, Issue 6, pp. 1153 - 1166
We prove the existence of least energy nodal solution for a class of Schrödinger–Poisson system in a bounded domain $${\Omega \subset {\mathbb{R}}^3}$$ Ω ⊂ R 3... 
35J65 | Engineering | 35J20 | Mathematical Methods in Physics | Schrödinger–Poisson systems Nodal solution | Variational methods | Theoretical and Applied Mechanics | EQUATIONS | MATHEMATICS, APPLIED | Schrodinger-Poisson systems Nodal solution | KLEIN-GORDON-MAXWELL | GROUND-STATE | Mathematical analysis | Nonlinearity | Energy of solution
Journal Article
Journal of Mathematical Physics, ISSN 0022-2488, 01/2019, Volume 60, Issue 1, p. 11503
In this paper, we prove the existence of a positive solution with minimal energy for a planar Schrödinger-Poisson system, where the nonlinearity is a... 
EQUATIONS | PHYSICS, MATHEMATICAL | KLEIN-GORDON-MAXWELL | Continuity (mathematics)
Journal Article
Nonlinear Analysis, ISSN 0362-546X, 11/2014, Volume 110, pp. 157 - 169
In this paper, a nonlinear Klein–Gordon–Maxwell System with solitary wave solution is considered. Using critical point theory, we establish sufficient... 
Variational methods | Critical point theorem | Klein–Gordon–Maxwell System | Klein-Gordon-Maxwell System | EXISTENCE | MATHEMATICS | MATHEMATICS, APPLIED | MULTIPLICITY | NONEXISTENCE | SOLITARY WAVES | SCHRODINGER-POISSON EQUATIONS | GROUND-STATE SOLUTIONS | Nonlinearity | Complement | Critical point | Solitary waves
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 05/2016, Volume 437, Issue 1, pp. 160 - 180
In this paper, we consider the following Schrödinger–Poisson system with singularity{−Δu+ηϕu=μu−r,inΩ,−Δϕ=u2,inΩ,u>0,inΩ,u=ϕ=0,on∂Ω, where Ω⊂R3 is a smooth... 
Singularity | Schrödinger–Poisson system | Multiplicity | Uniqueness | Schrödinger-Poisson system | Schrodinger-Poisson system | MATHEMATICS, APPLIED | KLEIN-GORDON-MAXWELL | NONLINEARITY | EQUATIONS | GROUND-STATE SOLUTIONS | MATHEMATICS | SIGN-CHANGING SOLUTIONS | R-3 | SEMILINEAR ELLIPTIC PROBLEM
Journal Article
Computers and Mathematics with Applications, ISSN 0898-1221, 05/2018, Volume 75, Issue 9, pp. 3358 - 3366
This paper is concerned with the following Klein–Gordon–Maxwell system: −△u+V(x)u−(2ω+ϕ)ϕu=f(x,u),x∈R3,△ϕ=(ω+ϕ)u2,x∈R3,where ω>0 is a constant, V∈C(R3,R),... 
Klein–Gordon–Maxwell system | Infinitely many solutions | Least energy solutions | Sign-changing potential | EXISTENCE | MATHEMATICS, APPLIED | NONEXISTENCE | SOLITARY WAVES | EQUATIONS | Klein-Gordon-Maxwell system | GROUND-STATE SOLUTIONS | POTENTIALS
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 03/2020, Volume 483, Issue 2, p. 123647
We study multiplicity of positive solutions for a class of Schrödinger-Poisson system with singularity and critical exponent, and obtain two positive solutions... 
Schrödinger-Poisson systems | Critical exponent | Singular nonlinearity | Perturbation approach | EXISTENCE | MATHEMATICS, APPLIED | KLEIN-GORDON-MAXWELL | Schrodinger-Poisson systems | EQUATIONS | GROUND-STATE SOLUTIONS | MATHEMATICS | SOLITARY WAVES | BOUND-STATES | CONCAVE
Journal Article
Nonlinear Analysis, ISSN 0362-546X, 07/2020, Volume 196, p. 111771
This paper is concerned with two classes of critical Klein–Gordon–Maxwell systems as follows −Δu+V(x)u−(2ω+ϕ)ϕu=μf(u)+u5,x∈R3,Δϕ=(ω+ϕ)u2,x∈R3and... 
Klein–Gordon–Maxwell | Critical growth | Ground state solution | Semiclassical states
Journal Article
Nonlinearity, ISSN 0951-7715, 08/2017, Volume 30, Issue 9, pp. 3492 - 3515
In this paper, we are concerned with the Schrodinger-Poisson system {-Delta u + u + empty set u = vertical bar u vertical bar(p-2)u in R-d, Delta empty set -... 
variational methods | logarithmic convolution potential | SchrödingerPoisson system | ground state solutions | EXISTENCE | Schrodinger-Poisson system | MATHEMATICS, APPLIED | KLEIN-GORDON-MAXWELL | WAVES | SCALAR FIELD-EQUATIONS | PRESCRIBED NORM | PHYSICS, MATHEMATICAL
Journal Article
Discrete and Continuous Dynamical Systems- Series A, ISSN 1078-0947, 05/2018, Volume 38, Issue 5, pp. 2333 - 2348
This paper is concerned with the following Klein-Gordon-Maxwell system. [graphic] [graphic] where 0 < omega <= m(0) and f is an element of C(R, R). By... 
Klein-Gordon-Maxwell system | Zero mass case | Ground state solutions | EXISTENCE | MATHEMATICS, APPLIED | zero mass case | NONEXISTENCE | ground state solutions | EQUATIONS | GROUND-STATE SOLUTIONS | POTENTIALS | MATHEMATICS | SOLITARY WAVES | HAMILTONIAN ELLIPTIC SYSTEM | SIGN-CHANGING SOLUTIONS | AMBROSETTI-RABINOWITZ CONDITION
Journal Article
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, ISSN 1417-3875, 2019, Volume 2019, Issue 40, pp. 1 - 12
In this paper, we consider the following nonhomogeneous Klein-Gordon-Maxwell system {-Delta u + V(x)u - (2 omega + phi)phi u = f(x,u) +h(x), x is an element of... 
EXISTENCE | MATHEMATICS | MATHEMATICS, APPLIED | nonhomogeneous | NONEXISTENCE | SOLITARY WAVES | Mountain Pass Theorem | EQUATIONS | Klein-Gordon-Maxwell system | GROUND-STATE SOLUTIONS | Ekeland's variational principle | klein–gordon–maxwell system | mountain pass theorem | ekeland's variational principle
Journal Article
Journal Article
Archive for Rational Mechanics and Analysis, ISSN 0003-9527, 10/2010, Volume 198, Issue 1, pp. 349 - 368
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 05/2019, Volume 473, Issue 1, pp. 87 - 111
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 03/2020, Volume 268, Issue 6, pp. 2672 - 2716
In this paper, we study the following singularly perturbed Schrödinger-Poisson system{−ε2△u+V(x)u+ϕu=f(u)+u5,x∈R3,−ε2△ϕ=u2,x∈R3, where ε is a small positive... 
Concentration | Critical growth | Schrödinger-Poisson system | Semiclassical state | EXISTENCE | Schrodinger-Poisson system | HARTREE | KLEIN-GORDON-MAXWELL | EQUATIONS | STANDING WAVES | MATHEMATICS | THOMAS-FERMI | BOUND-STATES | ATOMS
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 03/2014, Volume 411, Issue 2, pp. 787 - 793
We consider a Schrödinger–Poisson system in R3 with potential indefinite in sign and a general nonlinearity. We use the direct variational method and Morse... 
Morse theory | Palais–Smale condition | Schrödinger–Poisson system | Schrödinger-Poisson system | Palais-Smale condition | MATHEMATICS | Schrodinger-Poisson system | MATHEMATICS, APPLIED | KLEIN-GORDON-MAXWELL | BOUND-STATES | EQUATIONS | GROUND-STATE SOLUTIONS
Journal Article
Advanced Nonlinear Studies, ISSN 1536-1365, 02/2018, Volume 18, Issue 1, pp. 55 - 63
We study a Klein-Gordon-Maxwell system in a bounded spatial domain under Neumann boundary conditions on the electric potential. We allow a nonconstant coupling... 
Ljusternik-Schnirelmann Theory | Static Solutions | Variational Methods | Klein-Gordon-Maxwell Systems | MATHEMATICS | MATHEMATICS, APPLIED | EQUATIONS | GROUND-STATE SOLUTIONS | Mathematics - Analysis of PDEs
Journal Article
Discrete and Continuous Dynamical Systems- Series A, ISSN 1078-0947, 11/2018, Volume 38, Issue 11, pp. 5461 - 5504
In this paper, we study the following nonlinear Schrodinger-Poisson system { -Delta u + u + epsilon K(x)Phi(x)u = f(u), x is an element of R-3, -Delta Phi =... 
Schrödinger-Poisson system | Nonsymmetric potential | Reduction | nonsymmetric potential | EXISTENCE | Schrodinger-Poisson system | MATHEMATICS, APPLIED | KLEIN-GORDON-MAXWELL | NONEXISTENCE | SPHERES | EQUATIONS | NEUMANN PROBLEM | MOLECULES | MATHEMATICS | SOLITARY WAVES | BOUND-STATES | NONSYMMETRIC POTENTIALS | reduction
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.