X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (1627) 1627
Conference Proceeding (420) 420
Publication (70) 70
Book Chapter (14) 14
Dissertation (4) 4
Reference (2) 2
Magazine Article (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
lyapunov-krasovskii functional (1171) 1171
stability (502) 502
linear matrix inequality (488) 488
delay (482) 482
automation & control systems (479) 479
lyapunov–krasovskii functional (446) 446
linear matrix inequalities (405) 405
stability analysis (345) 345
stabilization (342) 342
neural networks (340) 340
engineering, electrical & electronic (312) 312
criteria (271) 271
mathematics, applied (271) 271
robust stability (270) 270
analysis (268) 268
exponential stability (256) 256
asymptotic stability (249) 249
delays (249) 249
time-varying delay (248) 248
control systems (231) 231
stability criteria (229) 229
computer science, artificial intelligence (223) 223
lyapunov-krasovskii functionals (223) 223
systems (191) 191
h-infinity control (183) 183
linear-systems (183) 183
time-varying delays (173) 173
discrete (170) 170
mathematical analysis (167) 167
mathematical models (165) 165
design (161) 161
synchronization (155) 155
delay effects (144) 144
time delay (144) 144
nonlinear systems (130) 130
time-delay systems (124) 124
engineering (123) 123
zeitverzögerung (123) 123
symmetric matrices (118) 118
neural-networks (115) 115
delay systems (112) 112
mathematics (111) 111
instruments & instrumentation (108) 108
computer simulation (105) 105
global asymptotic stability (100) 100
linear systems (99) 99
time-delay (99) 99
time-varying systems (99) 99
matrix methods (95) 95
uncertainty (95) 95
fuzzy systems (94) 94
robustness (92) 92
dynamical systems (87) 87
asymptotic properties (86) 86
dependent stability (85) 85
operations research & management science (84) 84
lmi (81) 81
nonlinearity (81) 81
algorithms (80) 80
computer science (79) 79
electrical engineering (77) 77
state estimation (77) 77
computer science, theory & methods (75) 75
numerical stability (75) 75
uncertain systems (75) 75
nonlinear-systems (74) 74
distributed delays (72) 72
integrals (71) 71
inequalities (68) 68
lyapunov methods (67) 67
time delay systems (67) 67
adaptive control (66) 66
robust control (66) 66
global exponential stability (65) 65
artificial intelligence (64) 64
controllers (64) 64
lyapunov–krasovskii functionals (63) 63
networks (62) 62
inequality (61) 61
control theory (59) 59
delay-dependent stability (59) 59
derivatives (59) 59
feedback (59) 59
neuronales netzwerk (59) 59
nonlinear dynamics (59) 59
state feedback (57) 57
varying delays (57) 57
control (55) 55
markov processes (55) 55
state (55) 55
engineering, multidisciplinary (54) 54
index medicus (54) 54
passivity (54) 54
differential equations (53) 53
interval time-varying delay (53) 53
mathematics, interdisciplinary applications (53) 53
control, robotics, mechatronics (51) 51
optimization (51) 51
design engineering (50) 50
studies (50) 50
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Automatica, ISSN 0005-1098, 10/2017, Volume 84, pp. 221 - 226
This paper is concerned with stability of a linear system with a time-varying delay. First, an improved reciprocally convex inequality including some existing... 
Time-delay systems | Stability | Lyapunov–Krasovskii functional | Reciprocally convex inequality | CRITERIA | Lyapunov-Krasovskii functional | AUTOMATION & CONTROL SYSTEMS | DEPENDENT STABILITY | INTEGRAL INEQUALITY | ENGINEERING, ELECTRICAL & ELECTRONIC | Equality | Electrical engineering
Journal Article
Automatica, ISSN 0005-1098, 2009, Volume 45, Issue 3, pp. 798 - 804
This article discusses the Lyapunov–Krasovskii functional approach for the stability problem of coupled differential-functional equations. Such systems... 
Lyapunov–Krasovskii functional | Stability | Time delay | Lyapunov-Krasovskii functional | AUTOMATION & CONTROL SYSTEMS | ENGINEERING, ELECTRICAL & ELECTRONIC | Mechanical engineering | Analysis
Journal Article
Applied Mathematics and Computation, ISSN 0096-3003, 05/2019, Volume 349, pp. 258 - 269
The stability issue of neural networks with time-varying delay is investigated in this paper. Firstly, a kind of new augmented single integral which involves... 
Stability analysis | Neural networks | Time-varying delay | Lyapunov–Krasovskii functional | MATHEMATICS, APPLIED | INEQUALITY | Lyapunov-Krasovskii functional | SYSTEMS | GLOBAL ASYMPTOTIC STABILITY | Analysis
Journal Article
Neurocomputing, ISSN 0925-2312, 03/2019, Volume 332, pp. 1 - 9
This paper examines the problem of asymptotic stability of continuous neural networks with time-varying delay via a new Lyapunov–Krasovskii functional (LKF).... 
Stability analysis | Neural networks | Time-varying delay | Lyapunov–Krasovskii functional | GLOBAL EXPONENTIAL STABILITY | CRITERIA | STABILIZATION | INEQUALITY | Lyapunov-Krasovskii functional | SYSTEMS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Electrical engineering | Usage | Analysis
Journal Article
Automatica, ISSN 0005-1098, 11/2015, Volume 61, pp. 126 - 133
Journal Article
Neurocomputing, ISSN 0925-2312, 11/2018, Volume 313, pp. 288 - 294
This paper is concerned with the problem of the stability and stabilization for continuous-time Takagi–Sugeno(T–S) fuzzy systems with time delay. A novel... 
T–S fuzzy model | Stability | Time delay | Stabilization | Lyapunov–Krasovskii functional | DOUBLE INTEGRAL INEQUALITY | CRITERIA | T-S fuzzy model | CONTROL DESIGN | Lyapunov-Krasovskii functional | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | VARYING DELAY
Journal Article
Applied Mathematics and Computation, ISSN 0096-3003, 09/2019, Volume 357, pp. 325 - 337
Delay-dependent stability analysis of linear systems with a time-varying delay is investigated in this paper. Firstly, instead of developing a... 
Stability | Augmented Lyapunov–Krasovskii functional | Time-delay system | Time-varying delay | LINEAR-SYSTEMS | CRITERIA | MATRIX | MATHEMATICS, APPLIED | Augmented Lyapunov-Krasovskii functional | HIERARCHY | Electrical engineering | Analysis | Equality
Journal Article
International Journal of Robust and Nonlinear Control, ISSN 1049-8923, 03/2012, Volume 22, Issue 4, pp. 420 - 436
SUMMARY This paper presents a new stability and L2‐gain analysis of linear Networked Control Systems (NCS). The new method is inspired by discontinuous... 
networked control systems | Lyapunov–Krasovskii method | time‐varying delay | time-varying delay | Lyapunov-Krasovskii method | LINEAR-SYSTEMS | H-INFINITY CONTROL | MATHEMATICS, APPLIED | CONTROL-SYSTEMS | DELAY | AUTOMATION & CONTROL SYSTEMS | DEPENDENT STABILITY | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article
International Journal of Robust and Nonlinear Control, ISSN 1049-8923, 07/2013, Volume 23, Issue 11, pp. 1277 - 1300
SUMMARYIn this paper, the problems of exponential stability and L2‐gain analysis of event‐triggered networked control systems (NCSs) with network‐induced... 
NCSs | event‐triggering | L2‐gain | Lyapunov–Krasovskii functional | exponential stability | TIME DELAYS | MATHEMATICS, APPLIED | DESIGN | STABILIZATION | STABILITY | event-triggering | ENGINEERING, ELECTRICAL & ELECTRONIC | L2-gain | TASKS | H-INFINITY CONTROL | CHANNEL | S FUZZY-SYSTEMS | Lyapunov-Krasovskii functional | AUTOMATION & CONTROL SYSTEMS | Control systems | Analysis
Journal Article
Automatica, ISSN 0005-1098, 06/2014, Volume 50, Issue 6, pp. 1691 - 1697
Journal Article
Automatica, ISSN 0005-1098, 04/2014, Volume 50, Issue 4, pp. 1249 - 1253
Journal Article
Automatica, ISSN 0005-1098, 12/2015, Volume 62, pp. 168 - 176
Journal Article
IEEE Transactions on Automatic Control, ISSN 0018-9286, 10/2017, Volume 62, Issue 10, pp. 5331 - 5336
Journal Article
Applied Mathematics and Computation, ISSN 0096-3003, 11/2015, Volume 270, pp. 534 - 542
In this paper, the problem of the input to state stability (ISS) for nonlinear systems with time-delay is investigated. A continuously differentiable... 
Uniform asymptotic stability | Indefinite Lyapunov–Krasovskii functional | Input to state stability (ISS) | Uniform stability | Indefinite Lyapunov-Krasovskii functional | SMALL-GAIN THEOREM | MATHEMATICS, APPLIED | ISS SYSTEMS | ROBUST STABILITY | Electrical engineering | Analysis | Methods
Journal Article
Automatica, ISSN 0005-1098, 10/2015, Volume 60, pp. 189 - 192
The integral inequality technique is widely used to derive delay-dependent conditions, and various integral inequalities have been developed to reduce the... 
Systems with time delay | Integral inequality | Stability | Lyapunov–Krasovskii functional | Lyapunov-Krasovskii functional | ROBUST STABILITY | STABILIZATION | AUTOMATION & CONTROL SYSTEMS | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article