X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (4175) 4175
Conference Proceeding (583) 583
Publication (530) 530
Dissertation (226) 226
Book Chapter (183) 183
Book / eBook (7) 7
Book Review (7) 7
Data Set (5) 5
Government Document (5) 5
Magazine Article (4) 4
Paper (1) 1
Reference (1) 1
Report (1) 1
Technical Report (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mcmc (2681) 2681
statistics & probability (1351) 1351
monte carlo method (926) 926
bayesian analysis (904) 904
models (846) 846
analysis (794) 794
algorithms (793) 793
markov processes (742) 742
markov chain monte carlo (689) 689
computer simulation (680) 680
statistics (562) 562
markov chains (561) 561
mathematical models (516) 516
inference (463) 463
index medicus (448) 448
bayes theorem (442) 442
bayesian inference (439) 439
humans (381) 381
monte carlo methods (376) 376
mathematics, interdisciplinary applications (336) 336
monte carlo simulation (318) 318
studies (300) 300
computation (293) 293
distributions (269) 269
computer science, interdisciplinary applications (249) 249
markov analysis (248) 248
mathematical & computational biology (237) 237
engineering, electrical & electronic (233) 233
usage (233) 233
bayesian (222) 222
mcmc methods (222) 222
regression (214) 214
model (212) 212
models, statistical (208) 208
uncertainty (202) 202
parameter estimation (195) 195
simulation (191) 191
environmental sciences (186) 186
methods (184) 184
economics (182) 182
bayesian methods (173) 173
modeling (172) 172
article (169) 169
convergence (169) 169
chain monte-carlo (168) 168
statistics, general (165) 165
social sciences, mathematical methods (163) 163
reversible jump mcmc (155) 155
gibbs sampler (154) 154
gibbs sampling (153) 153
animals (150) 150
parametric models (146) 146
ecology (145) 145
statistical analysis (141) 141
computer science (139) 139
sampling (135) 135
algorithm (134) 134
bayesian statistical decision theory (134) 134
evolutionary biology (134) 134
mathematics (134) 134
research (134) 134
computer science, artificial intelligence (131) 131
public, environmental & occupational health (127) 127
biology (126) 126
economic models (126) 126
mathematical analysis (126) 126
bayesian estimation (125) 125
approximation (124) 124
methodology (124) 124
parameters (124) 124
optimization (121) 121
models, genetic (120) 120
artificial intelligence (118) 118
genetics & heredity (115) 115
statistics - computation (114) 114
selection (113) 113
regression analysis (111) 111
markov-kette (108) 108
bayes methods (105) 105
estimation (104) 104
model selection (104) 104
statistical theory and methods (103) 103
computer science, theory & methods (101) 101
mcmc algorithm (101) 101
bayesian statistics (100) 100
female (96) 96
likelihood (96) 96
adaptive mcmc (95) 95
mcmc method (95) 95
medical informatics (93) 93
models, biological (93) 93
statistics - methodology (93) 93
estimates (92) 92
em algorithm (91) 91
data augmentation (89) 89
phylogeny (89) 89
maximum likelihood estimation (88) 88
water resources (88) 88
evolution (87) 87
62f15 (85) 85
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (4586) 4586
Chinese (241) 241
Japanese (84) 84
Portuguese (53) 53
French (47) 47
Korean (33) 33
Spanish (15) 15
German (2) 2
Polish (2) 2
Slovenian (2) 2
Swedish (2) 2
Turkish (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Statistical Software, ISSN 1548-7660, 01/2005, Volume 12, Issue 1, pp. 1 - 16
The R2WinBUGS package provides convenient functions to call WinBUGS from R. It automatically writes the data and scripts in a format readable by WinBUGS for... 
MCMC | R | WinBUGS | Interface
Journal Article
Journal of Statistical Software, ISSN 1548-7660, 2017, Volume 80, Issue 1, pp. 1 - 28
The brms package implements Bayesian multilevel models in R using the probabilistic programming language Stan. A wide range of distributions and link functions... 
MCMC | Stan | Bayesian inference | Multilevel model | Ordinal data | multilevel model | ordinal data | ITEM RESPONSE | LINEAR MIXED MODELS | BROWNE | STATISTICS & PROBABILITY | DISTRIBUTIONS | Stan R | ARTICLE | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | CONJUGATE
Journal Article
06/2009
Markov chain Monte Carlo algorithms (MCMC) and Adaptive Markov chain Monte Carlo algorithms (AMCMC) are most important methods of approximately sampling from... 
Adaptive | 0463 | MCMC
Dissertation
IEEE Signal Processing Letters, ISSN 1070-9908, 06/2019, Volume 26, Issue 6, pp. 953 - 957
Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques, such as Markov chain Monte Carlo (MCMC) and particle filters, have... 
Monte Carlo methods | Sociology | MCMC algorithms | parallel MCMC | population MCMC | Couplers | normal kernel coupler | Proposals | Bayesian inference | Kernel | CHAIN | MCMC | ENGINEERING, ELECTRICAL & ELECTRONIC | Monte Carlo method | Robustness (mathematics) | Computer simulation | Signal processing | Markov chains | Markov analysis | Bayesian analysis | Monte Carlo simulation
Journal Article
Journal of Statistical Software, ISSN 1548-7660, 2015, Volume 63, Issue 21, pp. 1 - 46
Journal Article
Systematic Biology, ISSN 1063-5157, 05/2007, Volume 56, Issue 3, pp. 453 - 466
Journal Article
Journal of Statistical Software, ISSN 1548-7660, 07/2016, Volume 71, Issue 9, pp. 1 - 25
The runjags package provides a set of interface functions to facilitate running Markov chain Monte Carlo models in JAGS from within R. Automated calculation of... 
BUGS | MCMC | JAGS | Graphical models | Interface utilities | Bayesian | HIERARCHICAL-MODELS | STATISTICS & PROBABILITY | CHAIN MONTE-CARLO | interface utilities | R | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | graphical models | CONVERGENCE | EXAMPLE | VARIANCE
Journal Article
Molecular Biology and Evolution, ISSN 0737-4038, 12/2014, Volume 31, Issue 12, pp. 3125 - 3135
Journal Article
Journal of Statistical Software, ISSN 1548-7660, 05/2016, Volume 70, Issue 9, pp. 1 - 20
ggmcmc is an R package for analyzing Markov chain Monte Carlo simulations from Bayesian inference. By using a well known example of hierarchical/ multilevel... 
MCMC | Bayesian inference | Ggmcmc | STATISTICS & PROBABILITY | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | ggmcmc
Journal Article
Computational Statistics & Data Analysis, ISSN 0167-9473, 10/2019, p. 106846
Journal Article
CROP & PASTURE SCIENCE, ISSN 1836-0947, 08/2019, Volume 70, Issue 7, pp. 615 - 621
Cotton (Gossypium spp.) provides similar to 90% of the world's textile fibre. The aim of this study was to use the principal additive effects and... 
MCMC | genetic selection | AGRICULTURE, MULTIDISCIPLINARY
Journal Article
Statistical Methodology, ISSN 1572-3127, 2012, Volume 9, Issue 1, pp. 158 - 171
There is a vast amount of literature regarding the asymptotic properties of various approaches to estimating simultaneous space–time panel models, but little... 
Markov Chain Monte Carlo estimation | Dynamic responses over time and space | Dynamic space–time panel data model | Dynamic space-time panel data model | STATISTICS & PROBABILITY | Economies and finances | Humanities and Social Sciences
Journal Article
Information Processing Letters, ISSN 0020-0190, 12/2019, Volume 152, p. 105851
A popular technique to sample fixed-size connected induced subgraphs of a graph, also known as graphlets, is based on running a certain random walk designed... 
MCMC | Motif mining | Graph algorithms | Random walks
Journal Article
Procedia Computer Science, ISSN 1877-0509, 2019, Volume 157, pp. 427 - 435
Time series of count data is not a widely studied research topic. This paper develops Bayesian forecasting method of counts whose conditional distributions... 
MCMC | Count Data | Forecasting | Bayesian
Journal Article
Journal of Computational and Graphical Statistics, ISSN 1061-8600, 07/2013, Volume 22, Issue 3, pp. 649 - 664
Parallel tempering is a generic Markov chain Monte Carlo sampling method which allows good mixing with multimodal target distributions, where conventional... 
Multimodality | Adaptive MCMC | Law of large numbers | ICMS Highlights: Advances in MCMC | MCMC ALGORITHMS | ERGODICITY | STATISTICS & PROBABILITY | METROPOLIS ALGORITHM | CHAIN MONTE-CARLO
Journal Article
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743, 2017, Volume 10177, pp. 309 - 323
Journal Article
Journal of Environmental Radioactivity, ISSN 0265-931X, 10/2018, Volume 193-194, pp. 82 - 90
Predicting the environmental fate of Cs in forest ecosystems along with the concentrations of Cs in tree parts are important for the managements of... 
ABC-MCMC | Radioecology | Forest ecosystem | FoRothCs
Journal Article
Journal of Statistical Software, ISSN 1548-7660, 01/2015, Volume 63, Issue 21, pp. 1 - 46
Structured additive regression (STAR) models provide a flexible framework for modeling possible nonlinear e ff ects of covariates: They contain the well... 
MCMC | STAR models | REML | Stepwise | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | MIXED MODELS | stepwise | STATISTICS & PROBABILITY | SPACE-TIME DATA | INFERENCE
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.