X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Conference Proceeding (3579) 3579
Journal Article (3410) 3410
Publication (266) 266
Book Chapter (145) 145
Dissertation (79) 79
Reference (7) 7
Magazine Article (6) 6
Book / eBook (5) 5
Book Review (3) 3
Paper (3) 3
Data Set (2) 2
Web Resource (2) 2
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mapreduce (5882) 5882
hadoop (1839) 1839
big data (1639) 1639
cloud computing (1340) 1340
algorithms (847) 847
computer science (635) 635
data mining (633) 633
computer science, theory & methods (576) 576
computer science, information systems (501) 501
computational modeling (481) 481
algorithm design and analysis (425) 425
distributed databases (394) 394
analysis (385) 385
parallel processing (373) 373
engineering, electrical & electronic (365) 365
clustering algorithms (351) 351
data management (348) 348
data models (347) 347
optimization (344) 344
programming (335) 335
computation (324) 324
data processing (313) 313
computer science, software engineering (286) 286
conferences (271) 271
hdfs (267) 267
servers (267) 267
scheduling (261) 261
computer science, artificial intelligence (232) 232
distributed computing (226) 226
clusters (213) 213
computer architecture (213) 213
scalability (212) 212
mathematical models (201) 201
databases (199) 199
machine learning (193) 193
computer science, hardware & architecture (189) 189
clustering (187) 187
spark (174) 174
usage (170) 170
telecommunications (169) 169
resource management (165) 165
classification (163) 163
task analysis (158) 158
performance (156) 156
data analysis (155) 155
cloud (154) 154
artificial intelligence (152) 152
file systems (150) 150
computers (149) 149
distributed processing (149) 149
partitioning algorithms (149) 149
fault tolerance (144) 144
indexes (138) 138
software (138) 138
bioinformatics (133) 133
parallel computing (132) 132
networks (130) 130
methods (129) 129
algorithm (127) 127
processor architectures (126) 126
computer communication networks (125) 125
training (125) 125
internet (123) 123
computer simulation (121) 121
hardware (121) 121
tasks (121) 121
runtime (119) 119
analytics (115) 115
data sets (114) 114
framework (114) 114
query processing (114) 114
hadoop mapreduce (113) 113
research (110) 110
educational institutions (109) 109
monitoring (108) 108
task scheduling (108) 108
computer science, interdisciplinary applications (105) 105
information management (101) 101
benchmark testing (100) 100
feature extraction (100) 100
information storage and retrieval (100) 100
cloud-computing (99) 99
hbase (98) 98
mathematical analysis (95) 95
computer networks (94) 94
database management (94) 94
load balancing (93) 93
accuracy (92) 92
heuristic algorithms (92) 92
computer science, general (91) 91
sparks (91) 91
clouds (90) 90
performance evaluation (90) 90
bandwidth (89) 89
google (89) 89
processor scheduling (88) 88
classification algorithms (87) 87
index medicus (87) 87
information systems applications (87) 87
big data analytics (86) 86
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (6226) 6226
Chinese (209) 209
Japanese (42) 42
Korean (30) 30
Spanish (5) 5
Turkish (4) 4
German (3) 3
Croatian (2) 2
French (1) 1
Russian (1) 1
Swedish (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Proceedings of the 2010 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2010, pp. 1115 - 1118
MapReduce is a popular framework for data-intensive distributed computing of batch jobs. To simplify fault tolerance, the output of each MapReduce task and job... 
mapreduce
Conference Proceeding
Proceedings of the 2010 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2010, pp. 495 - 506
In this paper we study how to efficiently perform set-similarity joins in parallel using the popular MapReduce framework. We propose a 3-stage approach for... 
mapreduce | set-similarity join
Conference Proceeding
by Dai, Wei and Ji, Wei
International Journal of Database Theory and Application, ISSN 2005-4270, 02/2014, Volume 7, Issue 1, pp. 49 - 60
Journal Article
Proceedings of the 2010 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2010, pp. 975 - 986
The MapReduce framework is increasingly being used to analyze large volumes of data. One important type of data analysis done with MapReduce is log processing,... 
analytics | hadoop | mapreduce | join processing
Conference Proceeding
Proceedings of the 2011 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2011, pp. 949 - 960
Joins are essential for many data analysis tasks, but are not supported directly by the MapReduce paradigm. While there has been progress on equi-joins,... 
theta join processing | MapReduce | skew
Conference Proceeding
Proceedings of the 2012 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 05/2012, pp. 25 - 36
We present an automatic skew mitigation approach for user-defined MapReduce programs and present SkewTune, a system that implements this approach as a drop-in... 
partitioning | user-defined operator | mapreduce | skew
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743, 2015, Volume 9124, pp. 367 - 376
Journal Article
Proceedings of the 2011 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2011, pp. 961 - 972
To achieve high reliability and scalability, most large-scale data warehouse systems have adopted the cluster-based architecture. In this paper, we propose the... 
column store | join | MapReduce
Conference Proceeding
Proceedings of the 2013 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2013, pp. 1147 - 1158
We present the architecture behind Twitter's real-time related query suggestion and spelling correction service. Although these tasks have received much... 
mapreduce | log analysis | hadoop | Log analysis | Hadoop | MapReduce
Conference Proceeding
Proceedings of the 2011 ACM SIGMOD International Conference on management of data, ISSN 0730-8078, 06/2011, pp. 973 - 984
In this paper, we design a fast MapReduce algorithm for Monte Carlo approximation of personalized PageRank vectors of all the nodes in a graph. The basic idea... 
personalized pagerank | MapReduce
Conference Proceeding
IEEE Transactions on Knowledge and Data Engineering, ISSN 1041-4347, 07/2015, Volume 27, Issue 7, pp. 1906 - 1919
Journal Article
International Journal of Advanced Trends in Computer Science and Engineering, 01/2019, Volume 8, Issue 1, pp. 1 - 3
Journal Article
Future Generation Computer Systems, ISSN 0167-739X, 02/2015, Volume 43-44, pp. 149 - 160
Healthcare scientific applications, such as body area network, require of deploying hundreds of interconnected sensors to monitor the health status of a host.... 
Parallel processing | Big data | Adaptive MapReduce | Healthcare scientific applications | Kalman filter | Adaptive | MapReduce | Health care industry
Journal Article
Future Generation Computer Systems, ISSN 0167-739X, 04/2020, Volume 105, pp. 275 - 286
As Machine Learning (ML) applications are becoming ever more pervasive, fully-trained systems are made increasingly available to a wide public, allowing... 
Parallelization | Machine Learning as a service | MapReduce
Journal Article
Future Generation Computer Systems, ISSN 0167-739X, 03/2013, Volume 29, Issue 3, pp. 739 - 750
Recently, the computational requirements for large-scale data-intensive analysis of scientific data have grown significantly. In High Energy Physics (HEP) for... 
Cloud computing | Massive data processing | Data-intensive computing | Hadoop | MapReduce | CLOUD | COMPUTER SCIENCE, THEORY & METHODS
Journal Article
Proceedings of the 2014 SIGMOD PhD symposium, ISSN 0730-8078, 06/2014, pp. 46 - 50
Recently, MapReduce frameworks, e.g., Hadoop, have been used extensively in different applications that include tera-byte sorting, machine learning, and graph... 
hadoop | indexing | mapreduce | spatial | Spatial | Hadoop | Indexing | MapReduce
Conference Proceeding
Future Generation Computer Systems, ISSN 0167-739X, 01/2018, Volume 78, pp. 287 - 301
Since MapReduce became an effective and popular programming framework for parallel data processing, key skew in intermediate data has become one of the... 
Data skew | Spark | Load balancing | Data sampling | MapReduce | IMPROVING MAPREDUCE PERFORMANCE | COMPUTER SCIENCE, THEORY & METHODS | Reservoirs | Algorithms | Computer science
Journal Article
International Journal of Pure and Applied Mathematics, ISSN 1311-8080, 2018, Volume 119, Issue 14, pp. 603 - 609
Journal Article
International Journal of Pure and Applied Mathematics, ISSN 1311-8080, 2018, Volume 119, Issue 12, pp. 15279 - 15292
Journal Article
Information Sciences, ISSN 0020-0255, 03/2016, Volume 332, pp. 33 - 55
Associative classifiers have proven to be very effective in classification problems. Unfortunately, the algorithms used for learning these classifiers are not... 
Cluster computing frameworks | Big data | Associative classifiers | MapReduce | Algorithms | Cars | Learning | Classifiers | Associative | Classification | Mathematical models | Complexity
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.