X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (71) 71
marcinkiewicz-zygmund inequalities (40) 40
mathematics, applied (29) 29
statistics & probability (28) 28
mathematics, general (26) 26
complete convergence (24) 24
60f15 (22) 22
convergence (22) 22
analysis (21) 21
random variables (19) 19
weighted sums (18) 18
inequalities (17) 17
interpolation (15) 15
arrays (14) 14
marcinkiewicz-zygmund inequality (14) 14
marcinkiewicz-zygmund strong law of large numbers (13) 13
marcinkiewicz–zygmund inequalities (12) 12
sums (12) 12
applications of mathematics (11) 11
large numbers (11) 11
applied mathematics (10) 10
marcinkiewicz-zygmund type strong law of large numbers (10) 10
numerical analysis (9) 9
polynomials (9) 9
sequences (9) 9
complete moment convergence (8) 8
dependent random-variables (8) 8
marcinkiewicz-zygmund type inequality (8) 8
mathematical theorems (8) 8
mathematics - classical analysis and odes (8) 8
random-variables (8) 8
statistics (8) 8
classical analysis and odes (7) 7
functional analysis (7) 7
marcinkiewicz-zygmund strong law (7) 7
probability theory and stochastic processes (7) 7
scattered data (7) 7
spherical harmonics (7) 7
strong law (7) 7
marcinkiewicz–zygmund inequality (6) 6
marcinkiewicz–zygmund strong law of large numbers (6) 6
sphere (6) 6
strong laws (6) 6
theorem (6) 6
approximation (5) 5
lagrange interpolation (5) 5
martingales (5) 5
mathematical inequalities (5) 5
reconstruction (5) 5
sampling (5) 5
statistics, general (5) 5
strong law of large numbers (5) 5
theorems (5) 5
theoretical, mathematical and computational physics (5) 5
41a55 (4) 4
62g05 (4) 4
algebra (4) 4
computer science (4) 4
consistency (4) 4
degrees of polynomials (4) 4
doubling weights (4) 4
estimators (4) 4
fourier analysis (4) 4
law of large numbers (4) 4
marcinkiewicz-zygmund (4) 4
marcinkiewicz-zygmund law (4) 4
marcinkiewicz-zygmund law of large numbers (4) 4
marcinkiewicz–zygmund strong law (4) 4
marcinkiewicz–zygmund type strong law of large numbers (4) 4
mathematical analysis (4) 4
mathematical functions (4) 4
maximal inequalities (4) 4
moment inequalities (4) 4
moving average process (4) 4
polynomial-approximation (4) 4
precise large deviations (4) 4
rates (4) 4
rotation group so (4) 4
sampling sets (4) 4
spaces (4) 4
statistics and probability (4) 4
weights (4) 4
41a17 (3) 3
60b12 (3) 3
60e05 (3) 3
60f05 (3) 3
almost sure convergence (3) 3
anàlisi global (3) 3
banach space (3) 3
circle (3) 3
density (3) 3
dependence (3) 3
dependent variables (3) 3
economic models (3) 3
fekete points (3) 3
global analysis (3) 3
integers (3) 3
kolmogorov width (3) 3
kolmogorov-marcinkiewicz-zygmund strong law of large numbers (3) 3
kolmogorov–marcinkiewicz–zygmund strong law of large numbers (3) 3
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 03/2015, Volume 423, Issue 2, pp. 1630 - 1649
We find necessary density conditions for Marcinkiewicz–Zygmund inequalities and interpolation for spaces of spherical polynomials in the weighted Lp (0 Interpolation | Spherical polynomials | Beurling type densities | Doubling weights | Fekete points | Marcinkiewicz–Zygmund inequalities | Marcinkiewicz-Zygmund inequalities | MATHEMATICS | DENSITY CONDITIONS | MATHEMATICS, APPLIED | SEQUENCES | SPACES | LANDAUS
Journal Article
Journal of Approximation Theory, ISSN 0021-9045, 09/2012, Volume 164, Issue 9, pp. 1165 - 1183
We establish weighted Lp,1≤p<∞ Bernstein-, Remez-, Nikolskii-, and Marcinkiewicz-type inequalities for algebraic polynomials considered on a quasismooth (in... 
Polynomial | Remez inequality | Bernstein inequality | Nikolskii inequality | Marcinkiewicz inequality | Quasismooth arc | REMEZ-TYPE INEQUALITIES | MARCINKIEWICZ-ZYGMUND INEQUALITIES | CIRCLE | MATHEMATICS | DOUBLING WEIGHTS | LARGE SIEVE | ARCS
Journal Article
Journal of Functional Analysis, ISSN 0022-1236, 2007, Volume 250, Issue 2, pp. 559 - 587
We find necessary density conditions for Marcinkiewicz–Zygmund inequalities and interpolation for spaces of spherical harmonics in S d with respect to the L p... 
Interpolation | Ball multiplier | Paley–Wiener spaces | Spherical harmonics | Marcinkiewicz–Zygmund inequalities | Landau densities | Marcinkiewicz-Zygmund inequalities | Paley-Wiener spaces | MATHEMATICS | spherical harmonics | interpolation | SEQUENCES | ball multiplier
Journal Article
Mathematics of Computation of the American Mathematical Society, ISSN 0025-5718, 07/2001, Volume 70, Issue 235, pp. 1113 - 1130
Geodetic and meteorological data, collected via satellites for example, are genuinely scattered and not confined to any special set of points. Even so, known... 
Integers | Numerical quadratures | Spherical harmonics | Coordinate systems | Mathematical inequalities | Polynomials | Euclidean space | Mathematical functions | Radius of a sphere | Degrees of polynomials | Quadrature | Marcinkiewicz-Zygmund inequalities | Scattered-data on spheres | scattered-data on spheres | MATHEMATICS, APPLIED | quadrature | TRANSFORMS
Journal Article
Journal of Approximation Theory, ISSN 0021-9045, 2007, Volume 145, Issue 2, pp. 237 - 252
We study a generalization of the classical Marcinkiewicz–Zygmund inequalities. We relate this problem to the sampling sequences in the Paley–Wiener space and... 
Sampling sequences | Marcinkiewicz–Zygmund inequalities | Paley–Wiener spaces | Marcinkiewicz-Zygmund inequalities | Paley-Wiener spaces | INTERPOLATION | MATHEMATICS | sampling sequences | CIRCLE | Mathematics - Classical Analysis and ODEs | Anàlisi de Fourier | Fourier analysis | Harmonic analysis | Anàlisi harmònica
Journal Article
Statistics and Probability Letters, ISSN 0167-7152, 2011, Volume 81, Issue 6, pp. 678 - 684
Journal Article
Journal of Approximation Theory, ISSN 0021-9045, 2009, Volume 157, Issue 2, pp. 113 - 126
Recently, norm equivalences between spherical polynomials and their sample values at scattered sites have been proved. These so-called Marcinkiewicz–Zygmund... 
Scattered data | Spherical harmonics | Random polynomials | Marcinkiewicz–Zygmund inequalities | Marcinkiewicz-Zygmund inequalities | MATHEMATICS | SCATTERED DATA INTERPOLATION | TRIGONOMETRIC POLYNOMIALS | RECONSTRUCTION | QUADRATURE
Journal Article
Constructive Approximation, ISSN 0176-4276, 2/2010, Volume 31, Issue 1, pp. 1 - 36
Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere $\mathbb{S}^{d}$ of ℝ d+1, and let d(x,y) denote the geodesic... 
Spherical caps | 65D30 | 41A55 | Spherical polynomials | Analysis | Numerical Analysis | 65D32 | Marcinkiewicz–Zygmund inequalities | Cubature formulas | Mathematics | Marcinkiewicz-Zygmund inequalities | TRIEBEL-LIZORKIN | SMOOTH FUNCTIONS | SPACES | SPHERES | A(INFINITY) WEIGHTS | CIRCLE | MATHEMATICS | POLYNOMIAL INEQUALITIES | MARKOV-BERNSTEIN INEQUALITIES | ORTHOGONAL POLYNOMIALS | DOUBLING WEIGHTS
Journal Article
Acta Mathematica Hungarica, ISSN 0236-5294, 2/2018, Volume 154, Issue 1, pp. 69 - 89
We investigate Marcinkiewicz–Zygmund type inequalities for multivariate polynomials on various compact domains in $${\mathbb{R}^d}$$ R d . These inequalities... 
L p optimal mesh | 41A63 | Marcinkiewicz–Zygmund type inequality | Mathematics, general | Mathematics | multivariate polynomial | 41A17 | MATHEMATICS | RESPECT | POLYNOMIAL INEQUALITIES | Marcinkiewicz-Zygmund type inequality | A(INFINITY) WEIGHTS | L-p optimal mesh | DOUBLING WEIGHTS
Journal Article
Journal of Complexity, ISSN 0885-064X, 2011, Volume 27, Issue 6, pp. 568 - 596
Let X be a compact, connected, Riemannian manifold (without boundary), ρ be the geodesic distance on X , μ be a probability measure on X , and { ϕ k } be an... 
Data defined manifolds | Discretization inequalities | Quadrature formulas | Marcinkiewicz–Zygmund inequalities | MarcinkiewiczZygmund inequalities | MATHEMATICS, APPLIED | Marcinkiewicz-Zygmund inequalities | ELLIPTIC DIFFERENTIAL-OPERATORS | HEAT KERNELS | COMPUTER SCIENCE, THEORY & METHODS
Journal Article
Statistics and Probability Letters, ISSN 0167-7152, 2011, Volume 81, Issue 8, pp. 1260 - 1266
In this paper, the best constant with respect to an inequality for martingales in Hall and Heyde (1980) is obtained. As a consequence, some large deviations... 
Marcinkiewicz–Zygmund inequality | Large deviations | Martingale inequality | Marcinkiewicz-Zygmund inequality | STATISTICS & PROBABILITY | Large deviations Martingale inequality Marcinkiewicz-Zygmund inequality | Equality
Journal Article
Monatshefte für Mathematik, ISSN 0026-9255, 2/2019, Volume 188, Issue 2, pp. 321 - 350
We study the class of (p, q)-regular operators between quasi-Banach lattices. In particular, a representation of this class as the dual of a certain tensor... 
47L20 | Banach lattice | 46M05 | Marcinkiewicz–Zygmund inequalities | 46B42 | Mathematics, general | ( p , q )-Regular operator | Mathematics | Lattice tensor norm | (p, q)-Regular operator | INTERPOLATION | MATHEMATICS | Marcinkiewicz-Zygmund inequalities | (p,q)-Regular operator | PRODUCTS | THEOREM
Journal Article
Statistics, ISSN 0233-1888, 11/2017, Volume 51, Issue 6, pp. 1259 - 1279
We study the almost sure convergence and rates of weighted sums of associated random variables under the classical assumption of existence of Laplace... 
association | convergence rates | Almost sure convergence | exponential inequalities | Marcinkiewicz-Zygmund law | Marcinkiewicz–Zygmund law | WEIGHTED SUMS | MARCINKIEWICZ | EXPONENTIAL INEQUALITY | STATISTICS & PROBABILITY
Journal Article
Constructive Approximation, ISSN 0176-4276, 2/2015, Volume 41, Issue 1, pp. 93 - 112
For each $$N\ge C_dt^d$$ N ≥ C d t d , we prove the existence of a well-separated spherical $$t$$ t -design in the sphere $$S^d$$ S d consisting of $$N$$ N... 
41A55 | Marcinkiewicz–Zygmund inequality | Area-regular partitions | 41A63 | Numerical Analysis | Analysis | Spherical designs | Well-separated configurations | Mathematics | 52C35 | Topological degree | 41A05 | MATHEMATICS | ENERGY | Marcinkiewicz-Zygmund inequality | POINTS
Journal Article
Numerical Functional Analysis and Optimization, ISSN 0163-0563, 09/2008, Volume 29, Issue 7-8, pp. 855 - 882
We consider scattered data approximation problems on SO (3). To this end, we construct a new operator for polynomial approximation on the rotation group. This... 
Rotation group | Marcinkiewicz-Zygmund inequalities | Scattered data approximation | Wigner-D functions | MATHEMATICS, APPLIED | rotation group | Wigner D-functions | RECONSTRUCTION | SPHERE | scattered data approximation
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.