X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics, applied (564) 564
mathematics (430) 430
algorithms (351) 351
convergence (342) 342
optimization (240) 240
operations research & management science (221) 221
operators (182) 182
analysis (176) 176
monotone-operators (170) 170
proximal point algorithm (140) 140
applications of mathematics (135) 135
mathematical analysis (123) 123
hilbert space (117) 117
studies (110) 110
sum (102) 102
inequalities (101) 101
mathematics, general (101) 101
splitting (98) 98
decomposition (95) 95
variational-inequalities (94) 94
theory of computation (93) 93
mathematical models (89) 89
iterative methods (84) 84
methods (80) 80
monotone operator (79) 79
approximation (78) 78
maximal monotone-operators (78) 78
90c25 (77) 77
operations research/decision theory (77) 77
splitting method (73) 73
mappings (71) 71
calculus of variations and optimal control; optimization (70) 70
algorithm (69) 69
projection (68) 68
inclusions (67) 67
47h05 (65) 65
maximal monotone operator (65) 65
computer science, software engineering (63) 63
engineering, general (61) 61
nonexpansive-mappings (61) 61
variational inequality (60) 60
convex optimization (56) 56
numerical analysis (56) 56
variational inequalities (56) 56
mapping (52) 52
computer science (51) 51
hilbert-space (50) 50
iterative algorithms (47) 47
mathematical methods in physics (46) 46
minimization (46) 46
fixed point (44) 44
nonexpansive mapping (44) 44
theorems (43) 43
monotone inclusions (42) 42
splitting algorithm (42) 42
applied mathematics (41) 41
monotone (40) 40
monotone inclusion (40) 40
regularization (40) 40
resolvent (40) 40
strong-convergence (40) 40
47j25 (39) 39
65k05 (39) 39
theoretical, mathematical and computational physics (39) 39
47h09 (38) 38
operation research/decision theory (38) 38
operator splitting (38) 38
point algorithm (38) 38
47h10 (37) 37
forward-backward algorithm (36) 36
strong convergence (36) 36
research (35) 35
monotone operators (34) 34
alternating direction method (33) 33
computational mathematics and numerical analysis (32) 32
convexity (32) 32
duality (32) 32
optimization and control (32) 32
weak-convergence (32) 32
banach space (31) 31
equations (31) 31
65k10 (30) 30
mathematics - optimization and control (30) 30
extragradient method (29) 29
fixed-points (29) 29
equilibrium problems (28) 28
strong-convergence theorems (28) 28
usage (27) 27
convex minimization (26) 26
banach-spaces (25) 25
equilibrium (25) 25
hilbert-spaces (25) 25
maximally monotone operator (25) 25
primal-dual algorithm (25) 25
signal recovery (25) 25
[ math.math-oc ] mathematics [math]/optimization and control [math.oc] (24) 24
algebra (24) 24
fixed points (24) 24
mathematics of computing (24) 24
systems (24) 24
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Computational Optimization and Applications, ISSN 0926-6003, 9/2017, Volume 68, Issue 1, pp. 57 - 93
In this work we propose a new splitting technique, namely Asymmetric Forward–Backward–Adjoint splitting, for solving monotone inclusions involving three terms, a maximally monotone, a cocoercive and a bounded linear operator... 
Monotone inclusion | Primal-dual algorithms | Convex optimization | Convex and Discrete Geometry | Operator splitting | Mathematics | Operations Research, Management Science | Operation Research/Decision Theory | Statistics, general | Optimization | MATHEMATICS, APPLIED | OPERATIONS RESEARCH & MANAGEMENT SCIENCE | Electrical engineering | Algorithms | Computational geometry | Splitting | Asymmetry | Convexity | Inclusions | Preconditioning
Journal Article
Journal of optimization theory and applications, ISSN 1573-2878, 2019, Volume 183, Issue 1, pp. 179 - 198
Journal Article
Set-Valued and Variational Analysis, ISSN 1877-0533, 12/2017, Volume 25, Issue 4, pp. 829 - 858
Journal Article
SIAM journal on optimization, ISSN 1095-7189, 2011, Volume 21, Issue 4, pp. 1230 - 1250
.... New primal-dual splitting algorithms are derived from this framework for inclusions involving composite monotone operators, and convergence results are established... 
Monotone inclusion | Minimization algorithm | Convex optimization | Composite operator | Operator splitting | Decomposition | Duality | Fenchel-Rockafellar duality | Monotone operator | Forward-backward-forward algorithm | Mathematics | Optimization and Control
Journal Article
Computational optimization and applications, ISSN 1573-2894, 2018, Volume 70, Issue 3, pp. 763 - 790
Journal Article
Set-valued and variational analysis, ISSN 1877-0541, 2011, Volume 20, Issue 2, pp. 307 - 330
We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators... 
Monotone inclusion | Nonsmooth convex optimization | Mathematics | Maximal monotone operator | Geometry | 90C25 | Analysis | Splitting algorithm | 49M29 | 49M27 | 49N15 | Parallel sum | 47H05 | Set-valued duality | MATHEMATICS, APPLIED | STABILITY | DECOMPOSITION | PROXIMAL POINT ALGORITHM | VARIATIONAL-INEQUALITIES | RECOVERY | MINIMIZATION | MAPPINGS | Algorithms | Optimization and Control
Journal Article
Numerical Algorithms, ISSN 1017-1398, 9/2019, Volume 82, Issue 1, pp. 263 - 295
...) method and a Douglas-Rachford-Tseng’s forward-backward (F-B) splitting method for solving two-operator and four-operator monotone inclusions, respectively. The former method... 
Monotone operators | Numeric Computing | Theory of Computation | HPE method | Inexact Douglas-Rachford method | Complexity | Splitting | Algorithms | Algebra | 90C25 | Numerical Analysis | Computer Science | Tseng’s forward-backward method | 49M27 | 47H05 | MATHEMATICS, APPLIED | ENLARGEMENT | PROXIMAL POINT ALGORITHM | SUM | EXTRAGRADIENT | Tseng's forward-backward method | CONVERGENCE | SADDLE-POINT | OPERATORS | Employee motivation | Analysis | Methods
Journal Article
Symmetry (Basel), ISSN 2073-8994, 2018, Volume 10, Issue 11, p. 563
The three-operator splitting algorithm is a new splitting algorithm for finding monotone inclusion problems of the sum of three maximally monotone operators, where one is cocoercive... 
Inexact three-operator splitting algorithm | Nonexpansive operator | Fixed point | RECOVERY | fixed point | MULTIDISCIPLINARY SCIENCES | PROXIMAL POINT ALGORITHM | OPTIMIZATION | inexact three-operator splitting algorithm | nonexpansive operator | SOLVING MONOTONE INCLUSIONS
Journal Article
Journal of optimization theory and applications, ISSN 1573-2878, 2018, Volume 178, Issue 1, pp. 153 - 190
Journal Article