X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (1429) 1429
Conference Proceeding (1130) 1130
Publication (97) 97
Patent (51) 51
Book Chapter (42) 42
Dissertation (34) 34
Book / eBook (5) 5
Magazine Article (3) 3
Paper (2) 2
Reference (2) 2
Government Document (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
multi-label classification (998) 998
classification (516) 516
multi-label learning (474) 474
computer science, artificial intelligence (444) 444
algorithms (400) 400
machine learning (337) 337
training (323) 323
multi-label (290) 290
engineering, electrical & electronic (269) 269
computer science (262) 262
analysis (235) 235
computer science, information systems (233) 233
data mining (219) 219
feature extraction (210) 210
correlation (198) 198
artificial intelligence (178) 178
labels (176) 176
index medicus (171) 171
learning (152) 152
neural networks (145) 145
support vector machines (145) 145
feature selection (132) 132
semantics (132) 132
classification algorithms (127) 127
deep learning (125) 125
prediction algorithms (120) 120
classifiers (115) 115
support vector machine (110) 110
task analysis (104) 104
optimization (101) 101
proteins (93) 93
text categorization (87) 87
computer science, software engineering (86) 86
telecommunications (84) 84
accuracy (83) 83
mathematical models (78) 78
humans (75) 75
semi-supervised learning (74) 74
computer science, interdisciplinary applications (72) 72
maschinelles lernen (70) 70
measurement (67) 67
amino-acid-composition (66) 66
conferences (63) 63
multi-label classifier (63) 63
image classification (62) 62
physics (62) 62
mathematical & computational biology (61) 61
vectors (61) 61
computer science, theory & methods (58) 58
methods (58) 58
label correlation (57) 57
pattern recognition (57) 57
image annotation (55) 55
multi-instance multi-label learning (55) 55
computational modeling (54) 54
predictive models (54) 54
advertising (53) 53
annotations (53) 53
chemistry (53) 53
education (53) 53
models (53) 53
algorithm design and analysis (51) 51
cryptography (51) 51
display (51) 51
displaying (51) 51
labels or name-plates (51) 51
seals (51) 51
signs (51) 51
bioinformatics (50) 50
clustering algorithms (50) 50
convolutional neural network (50) 50
dimensionality reduction (50) 50
data models (49) 49
neuronales netzwerk (48) 48
algorithm (47) 47
data sets (47) 47
decision trees (47) 47
testing (47) 47
biology (46) 46
usage (46) 46
hierarchical multi-label classification (45) 45
biochemical research methods (42) 42
chemical surface treatment (42) 42
coating by vacuum evaporation, by sputtering, by ion implantationor by chemical vapour deposition, in general (42) 42
coating material with metallic material (42) 42
coating metallic material (42) 42
diffusion treatment of metallic material (42) 42
images (42) 42
inhibiting corrosion of metallic material or incrustation ingeneral (42) 42
lernalgorithmus (42) 42
metallurgy (42) 42
multi-step processes for surface treatment of metallicmaterial involving at least one process provided for in classc23 and at least oneprocess covered by subclass c21d or c22f or class c25 (42) 42
non-mechanical removal of metallic material from surface (42) 42
research (42) 42
computational biology - methods (41) 41
databases (41) 41
feature-selection (41) 41
prediction (41) 41
tasks (40) 40
text classification (40) 40
more...
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (2465) 2465
Chinese (53) 53
Japanese (52) 52
French (5) 5
Korean (4) 4
Portuguese (3) 3
Indonesian (1) 1
Spanish (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Pattern Recognition, ISSN 0031-3203, 09/2012, Volume 45, Issue 9, pp. 3084 - 3104
Multi-label learning has received significant attention in the research community over the past few years: this has resulted in the development of a variety of... 
Multi-label ranking | Multi-label classification | Comparison of multi-label learning methods | CLASSIFICATION | ALGORITHMS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC | Learning | Classifiers | Hierarchies | Communities | Classification | Benchmarking | Pattern recognition | Representations
Journal Article
Pattern Recognition, ISSN 0031-3203, 09/2004, Volume 37, Issue 9, pp. 1757 - 1771
Journal Article
Artificial Intelligence, ISSN 0004-3702, 2012, Volume 176, Issue 1, pp. 2291 - 2320
In this paper, we propose the MIML ( Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with... 
Multi-label learning | Multi-instance multi-label learning | Multi-instance learning | Machine learning | MIML | NEURAL-NETWORKS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Algorithms | Learning | Tasks | Semantics | Strategy | Degeneration | Representations | Expert systems
Journal Article
Applied Soft Computing Journal, ISSN 1568-4946, 01/2019, Volume 74, pp. 709 - 728
The mapping relations learning between instances and multiple labels should reflect the underlying joint probability distribution following by the data sets.... 
Deep supervised autoencoder | Multi-label relations | Joint multi-label conditional posterior probability | Joint multi-label conditional posterior | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | probability | CLASSIFICATION | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Journal Article
Neurocomputing, ISSN 0925-2312, 12/2018, Volume 320, pp. 35 - 46
•A more realistic new proposal for emotion analysis grounded by author and reader.•Multi-label classification paradigm in the Sentiment Analysis domain.•Real... 
Problem transformation | Sentiment analysis | Back propagation multi-label learning | Multi-label k-Nearest Neighbor | Hierarchy of multi-label classifier | Algorithm adaptation | CLASSIFICATION | NETWORKS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | CLASSIFIERS | Computer science | Methods | Algorithms
Journal Article
IEEE Transactions on Image Processing, ISSN 1057-7149, 04/2017, Volume 26, Issue 4, pp. 1694 - 1707
Multi-label learning draws great interests in many real world applications. It is a highly costly task to assign many labels by the oracle for one instance.... 
Training | Algorithm design and analysis | Uncertainty | Measurement uncertainty | Active learning | Robustness | Loss measurement | multi-label classification | Labeling | multi-label learning | DRIVEN | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC | Data mining | Artificial intelligence | Research
Journal Article
Applied Soft Computing, ISSN 1568-4946, 01/2016, Volume 38, pp. 244 - 256
[Display omitted] •Different from the traditional multi-label feature selection, the proposed algorithm derives from different cognitive viewpoints.•A simple... 
Neighborhood mutual information | Multi-label learning | Feature selection | Neighborhood | Multi label learning | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | ATTRIBUTE REDUCTION | CLASSIFICATION | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Computer science
Journal Article
Journal of Machine Learning Research, ISSN 1532-4435, 02/2016, Volume 17
Multi-label classification has rapidly attracted interest in the machine learning literature, and there are now a large number and considerable variety of... 
Learning | Incremental | Multi-target | Multi-label | Classification | learning | incremental | classification | multi-target | AUTOMATION & CONTROL SYSTEMS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | multi-label
Journal Article
Journal of Machine Learning Research, ISSN 1532-4435, 07/2011, Volume 12, pp. 2411 - 2414
MULAN is a Java library for learning from multi-label data. It offers a variety of classification, ranking, thresholding and dimensionality reduction... 
Dimensionality reduction | Evaluation | Ranking | Hierarchical classification | Thresholding | Classification | Multi-label data | evaluation | thresholding | dimensionality reduction | hierarchical classification | multi-label data | ranking | classification | AUTOMATION & CONTROL SYSTEMS | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Journal Article
Neurocomputing, ISSN 0925-2312, 01/2018, Volume 273, pp. 494 - 508
Data labelling is commonly an expensive process that requires expert handling. In multi-label data, data labelling is further complicated owing to the experts... 
Multi-label classification | Multi-label active learning | Label ranking | UNCERTAINTY | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | Computer science | Analysis | Numerical analysis
Journal Article
Journal Article
Proceedings of SPIE - The International Society for Optical Engineering, ISSN 0277-786X, 2018, Volume 10789
Conference Proceeding