X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (68) 68
multipartite tournaments (62) 62
cycles (33) 33
discrete mathematics and combinatorics (26) 26
multipartite tournament (24) 24
theoretical computer science (22) 22
mathematics, applied (21) 21
semicomplete multipartite digraphs (15) 15
complementary cycles (14) 14
bipartite tournaments (13) 13
graphs (13) 13
mathematical analysis (12) 12
digraphs (10) 10
graph theory (10) 10
locally semicomplete digraphs (10) 10
regular multipartite tournaments (10) 10
tournaments (10) 10
paths (9) 9
applied mathematics (8) 8
combinatorics (7) 7
computer science (7) 7
hamiltonian path (7) 7
kings (7) 7
polynomial algorithm (7) 7
semicomplete multipartite digraph (7) 7
algorithms (6) 6
almost regular multipartite tournaments (6) 6
number (6) 6
05c20 (5) 5
c-partite tournaments (5) 5
distances (5) 5
engineering design (5) 5
hamiltonian cycle (5) 5
pancyclicity (5) 5
partite tournaments (5) 5
c-greater-than-or-equal-to-5 (4) 4
cycle (4) 4
cycle factor (4) 4
multipartite digraphs (4) 4
orientation (4) 4
05c38 (3) 3
4-kings (3) 3
algorithm (3) 3
complexity (3) 3
connectivity (3) 3
digraph (3) 3
discrete mathematics (3) 3
faculty of science\computer science (3) 3
fixed arc (3) 3
hamiltonian cycles (3) 3
hamiltonian paths (3) 3
lengths (3) 3
longest cycle (3) 3
longest paths (3) 3
mathematics, general (3) 3
pancyclic (3) 3
quasi-transitive digraph (3) 3
regularity (3) 3
theorems (3) 3
universal arc (3) 3
vertex (3) 3
vertices (3) 3
3-kings (2) 2
3-partite tournaments (2) 2
applications of mathematics (2) 2
circuits (2) 2
combinatorial analysis (2) 2
componentwise complementary cycles (2) 2
computational theory and mathematics (2) 2
cycle-connected (2) 2
directed paths (2) 2
diregular bipartite tournaments (2) 2
extended semicomplete digraph (2) 2
global irregularity (2) 2
graph (2) 2
graph algorithms (2) 2
irregularities (2) 2
kernel (2) 2
king (2) 2
longest path (2) 2
math applications in computer science (2) 2
minimum equivalent digraph (2) 2
oriented graphs (2) 2
outpaths (2) 2
pancyclic oriented graphs (2) 2
path (2) 2
path covering (2) 2
path factor (2) 2
path-mergeable digraph (2) 2
quantum physics (2) 2
quasi-transitive digraphs (2) 2
regular (2) 2
regular 3-partite tournament (2) 2
regular multipartite tournament (2) 2
studies (2) 2
subtournaments (2) 2
theoretical, mathematical and computational physics (2) 2
tournament (2) 2
weakly complementary cycles (2) 2
-kernel (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Discrete Mathematics, ISSN 0012-365X, 05/2019, Volume 342, Issue 5, pp. 1223 - 1232
A c-partite tournament is an orientation of a complete c-partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament D is... 
Multipartite tournament | Regular 3-partite tournament | Cycle | MATHEMATICS | ARC
Journal Article
by Li, LN and Molla, T
ELECTRONIC JOURNAL OF COMBINATORICS, ISSN 1077-8926, 10/2019, Volume 26, Issue 4
Both Cuckler and Yuster independently conjectured that when n is an odd positive multiple of 3 every regular tournament on n vertices contains a collection of... 
MATHEMATICS | MATHEMATICS, APPLIED | HAJNAL-SZEMEREDI THEOREM | PERFECT MATCHINGS | MULTIPARTITE VERSION | PACKING | GRAPHS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 11/2016, Volume 339, Issue 11, pp. 2793 - 2803
In this paper we relate the global irregularity and the order of a c-partite tournament T to the existence of certain cycles and the problem of finding the... 
Multipartite tournaments | Cycles | Global irregularity | MATHEMATICS | Mathematical analysis | Irregularities
Journal Article
Acta Mathematicae Applicatae Sinica, English Series, ISSN 0168-9673, 10/2018, Volume 34, Issue 4, pp. 710 - 717
Gutin and Rafiey (Australas J. Combin. 34 (2006), 17-21) provided an example of an n-partite tournament with exactly n − m + 1 cycles of length of m for any... 
O157.5 | tournaments | multipartite tournaments | Theoretical, Mathematical and Computational Physics | Mathematics | cycles | Applications of Mathematics | Math Applications in Computer Science | MATHEMATICS, APPLIED
Journal Article
Discrete Mathematics, ISSN 0012-365X, 11/2015, Volume 338, Issue 11, pp. 1982 - 1988
Let T be a 3-partite tournament and F3(T) be the set of vertices of T not in triangles. We prove that, if the global irregularity of T, ig(T), is one and... 
Tripartite tournaments | [formula omitted]-free vertices | Global irregularity | C 3 →-free vertices | MATHEMATICS | MULTIPARTITE TOURNAMENTS | (C-3)over-right-arrow-free vertices
Journal Article
Discrete Mathematics, ISSN 0012-365X, 02/2016, Volume 339, Issue 2, pp. 597 - 605
A multipartite or c-partite tournament is an orientation of a complete c-partite graph. In 2013, Lu, Guo and Surmacs introduced the concept of... 
Multipartite tournament | Quasi-Hamiltonian connectivity | MATHEMATICS | DIGRAPHS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 01/2016, Volume 339, Issue 1, pp. 17 - 20
A c-partite tournament is an orientation of a complete c-partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament D is... 
Regular multipartite tournament | 3-partite tournament | Multipartite tournament | Cycle | MATHEMATICS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 10/2011, Volume 311, Issue 20, pp. 2272 - 2275
Volkmann and Winzen [L. Volkmann, S. Winzen, Strong subtournaments containing a given vertex in regular multipartite tournaments, Discrete Math. 308 (2008)... 
Multipartite tournament | Regular multipartite tournament | Subtournament | C-GREATER-THAN-OR-EQUAL-TO-5 | MATHEMATICS | MULTIPARTITE TOURNAMENTS | Mathematical analysis
Journal Article
Journal of Nonparametric Statistics, ISSN 1048-5252, 01/2015, Volume 27, Issue 1, pp. 107 - 126
Whereas various efficient learning algorithms have been recently proposed to perform bipartite ranking tasks, cast as receiver operating characteristic (ROC)... 
ROC surface | multipartite ranking | VUS optimisation | 62G10 | 62C99 | recursive partitioning | Recursive partitioning | STATISTICS & PROBABILITY | Learning | Manifolds | Algorithms | Ranking | Scoring | Mathematical models | Criteria | Optimization | Probability | Mathematics | Statistics | Machine Learning
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2007, Volume 307, Issue 24, pp. 3097 - 3129
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 03/2015, Volume 184, pp. 253 - 257
A c-partite tournament is an orientation of a complete c-partite graph. Recently, M. Lu, et al., introduced the concept of quasi-Hamiltonian cycles, that is to... 
Out-arc | Multipartite tournament | Quasi-Hamiltonian cycle | MATHEMATICS, APPLIED
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 07/2012, Volume 160, Issue 10-11, pp. 1524 - 1531
The acyclic disconnection of a digraph D is the maximum number of components that can be obtained by deleting from D the set of arcs of an acyclic subdigraph.... 
Multipartite tournaments | Regular bipartite tournaments | Acyclic disconnection | DIGRAPH | MATHEMATICS, APPLIED | Mathematical analysis | Graph theory | Disengaging
Journal Article
Graphs and Combinatorics, ISSN 0911-0119, 7/2013, Volume 29, Issue 4, pp. 1141 - 1149
A digraph D = (V(D), A(D)) is called cycle-connected if for every pair of vertices $${u, v\in V(D)}$$ there exists a cycle containing both u and v. Ádám (Acta... 
05C20 | Multipartite tournament | Universal arc | Cycle-connected | Mathematics | Engineering Design | Combinatorics | 05C38
Journal Article
Ars Combinatoria, ISSN 0381-7032, 2014, Volume 113, pp. 201 - 224
A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A digraph D is cycle complementary if there exist two vertex-disjoint... 
Multipartite tournaments | Almost regular multipartite tournaments | Complementary cycles | MATHEMATICS | LOCALLY SEMICOMPLETE DIGRAPHS | multipartite tournaments | complementary cycles | C-PARTITE TOURNAMENTS | almost regular multipartite tournaments
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 07/2012, Volume 160, Issue 10-11, pp. 1561 - 1566
A multipartite or c-partite tournament is an orientation of a complete c-partite graph. Lu and Guo (submitted for publication) [3] recently introduced strong... 
Weak quasi-Hamiltonian-set-connectivity | Quasi-Hamiltonian-connectivity | Multipartite tournament | MATHEMATICS, APPLIED | Graphs | Orientation | Mathematical analysis | Documents
Journal Article
Graphs and Combinatorics, ISSN 0911-0119, 9/2014, Volume 30, Issue 5, pp. 1271 - 1282
A tournament is a directed graph whose underlying graph is a complete graph. A circuit is an alternating sequence of vertices and arcs of the form v 1, a 1, v... 
Multipartite tournaments | Regular tournaments | Almost regular tournaments | Pancircuitous | Tournaments | Mathematics | Engineering Design | Combinatorics | Pancyclic | MATHEMATICS | CYCLES | Computer science | Graph theory | Texts | Graphs | Congestion | Circuits | Combinatorial analysis
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2008, Volume 308, Issue 2, pp. 277 - 286
We present all possible distributions of 3-kings in 3-partite tournaments with at most one transmitter. 
King | Multipartite tournament | MATHEMATICS | 4-KINGS | NUMBER | king | BIPARTITE TOURNAMENTS | PARTITE TOURNAMENTS | multipartite tournament | MULTIPARTITE TOURNAMENTS | KINGS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2008, Volume 308, Issue 9, pp. 1710 - 1721
An orientation of a complete graph is a tournament, and an orientation of a complete c -partite graph is a c -partite tournament. If x is a vertex of a digraph... 
Multipartite tournaments | Regular multipartite tournaments | Subtournaments | MATHEMATICS | multipartite tournaments | regular multipartite tournaments | subtournaments | CYCLES
Journal Article
Graphs and Combinatorics, ISSN 0911-0119, 9/2011, Volume 27, Issue 5, pp. 669 - 683
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. Let V 1, V 2, . . . ,V c be the... 
Multipartite tournaments | 05C20 | Weakly complementary cycles | Mathematics | Engineering Design | Combinatorics | MATHEMATICS | BIPARTITE TOURNAMENTS | VERTEX | LOCALLY SEMICOMPLETE DIGRAPHS | FIXED ARC | Computer science | Graphs | Graph theory | Orientation | Combinatorial analysis
Journal Article
AKCE International Journal of Graphs and Combinatorics, ISSN 0972-8600, 12/2011, Volume 8, Issue 2, pp. 181 - 198
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.