X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
missing data (222) 222
statistics & probability (219) 219
pattern-mixture models (206) 206
humans (163) 163
index medicus (136) 136
models, statistical (90) 90
incomplete data (89) 89
mathematical & computational biology (87) 87
longitudinal data (77) 77
longitudinal studies (76) 76
sensitivity analysis (76) 76
data interpretation, statistical (73) 73
pattern-mixture-models (72) 72
multiple imputation (70) 70
public, environmental & occupational health (69) 69
drop-out (66) 66
female (65) 65
inference (63) 63
medical informatics (63) 63
models (61) 61
article (57) 57
medicine, research & experimental (55) 55
male (54) 54
bias (51) 51
pattern-mixture model (51) 51
analysis (48) 48
clinical trials (47) 47
computer simulation (43) 43
modeling (39) 39
statistics (39) 39
adult (37) 37
middle aged (37) 37
studies (36) 36
algorithms (35) 35
health care sciences & services (35) 35
parametric models (35) 35
aged (34) 34
likelihood functions (32) 32
quality of life (32) 32
pattern mixture model (31) 31
treatment outcome (31) 31
missing not at random (30) 30
multivariate incomplete data (30) 30
nonresponse (30) 30
regression (30) 30
regression analysis (30) 30
outcomes (28) 28
selection model (27) 27
statistical analysis (27) 27
research (26) 26
pharmacology & pharmacy (25) 25
patient dropouts - statistics & numerical data (24) 24
clinical-trials (23) 23
data analysis (23) 23
linear models (23) 23
methods (23) 23
missing at random (23) 23
mathematical models (22) 22
maximum-likelihood (22) 22
regression-models (22) 22
research design (22) 22
substance abuse (22) 22
bayesian analysis (21) 21
imputation (21) 21
patient dropouts (21) 21
selection models (21) 21
strategies (20) 20
adolescent (19) 19
bayes theorem (19) 19
ignorable drop-out (19) 19
pattern‐mixture model (19) 19
school dropouts (19) 19
semiparametric regression (19) 19
united states (19) 19
biology (18) 18
cancer (18) 18
mathematics, interdisciplinary applications (18) 18
pattern mixture models (18) 18
psychiatry (18) 18
sensitivity (18) 18
sensitivity-analysis (18) 18
simulation (18) 18
biometrics (17) 17
em algorithm (17) 17
likelihood (17) 17
repeated outcomes (17) 17
attrition (16) 16
data models (16) 16
linear-model (16) 16
nonignorable nonresponse (16) 16
randomized controlled trials as topic - methods (16) 16
usage (16) 16
biometry - methods (15) 15
depression (15) 15
follow-up studies (15) 15
media (15) 15
missing-data (15) 15
psychology, clinical (15) 15
randomized controlled trials as topic - statistics & numerical data (15) 15
selection (15) 15
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Statistics in Medicine, ISSN 0277-6715, 02/2019, Volume 38, Issue 4, pp. 660 - 673
Journal Article
Statistics in Medicine, ISSN 0277-6715, 02/2019, Volume 38, Issue 5, pp. 792 - 808
Journal Article
Statistics and Probability Letters, ISSN 0167-7152, 01/2020, Volume 156, p. 108585
Study designs where follow-up samples are collected through multiple attempts have been called repeated attempts designs. In this note we explore the... 
Missing data | Repeated attempt design | Pattern mixture model | STATISTICS & PROBABILITY
Journal Article
Journal of the Royal Statistical Society: Series C (Applied Statistics), ISSN 0035-9254, 01/2018, Volume 67, Issue 1, pp. 255 - 273
Summary The incomplete informative cluster size problem is motivated by the National Institute of Child Health and Human Development consecutive pregnancies... 
Latent variable | Incomplete informative cluster size | Repeated pregnancy | Sensitivity analysis | Pattern–mixture model | Generalized linear mixed model | Pattern-mixture model | MIXED MODELS | STATISTICS & PROBABILITY | Pregnancy | Pregnant women | Hypertension | Clusters | Trajectory analysis | Parity | Pattern mixture model | Repeated Pregnancy
Journal Article
PHARMACEUTICAL STATISTICS, ISSN 1539-1604, 11/2013, Volume 12, Issue 6, pp. 337 - 347
The need to use rigorous, transparent, clearly interpretable, and scientifically justified methodology for preventing and dealing with missing data in clinical... 
MIXTURE-MODELS | sensitivity analysis | multiple imputation | MULTIPLE-IMPUTATION | PHARMACOLOGY & PHARMACY | STATISTICS & PROBABILITY | missing data | pattern mixture models | clinical assumptions
Journal Article
Journal of the American Statistical Association, ISSN 0162-1459, 10/2016, Volume 111, Issue 516, pp. 1454 - 1465
Journal Article
Pharmaceutical Statistics, ISSN 1539-1604, 11/2013, Volume 12, Issue 6, pp. 337 - 347
The need to use rigorous, transparent, clearly interpretable, and scientifically justified methodology for preventing and dealing with missing data in clinical... 
multiple imputation | sensitivity analysis | missing data | pattern mixture models | clinical assumptions | Data Interpretation, Statistical | Guidelines as Topic | Humans | Clinical Trials as Topic - methods | Models, Statistical | Data Collection - methods | Research Design | Clinical trials | Usage
Journal Article