Advances in Physics, ISSN 0001-8732, 11/2015, Volume 64, Issue 5-6, pp. 519 - 626

Multiferroics are those materials with more than one ferroic order, and magnetoelectricity refers to the mutual coupling between magnetism (spins and/or...

magnetostriction | ferroelectric field effect | spin-orbit coupling | 75.70.Tj spin-orbit effects | 77.55.Nv multiferroic/magnetoelectric films | 75.85.+t magnetoelectric effects | electromagnon | exchange bias | 77.80.-e ferroelectricity and antiferroelectricity | Time-reversal and space-inversion symmetries | 75.80.+q magnetomechanical effects | skyrmion | multiferroicity and magnetoelectricity | ferroelectric domain | multiferroics | spinâ€"orbit coupling | THIN-FILMS | HEXAGONAL FERROELECTRICITY | PHYSICS, CONDENSED MATTER | DOMAIN-WALLS | ELECTRIC-FIELD CONTROL | 180-DEGREES MAGNETIZATION REVERSAL | TUNNEL-JUNCTIONS | ANISOTROPIC SUPEREXCHANGE INTERACTION | EMERGENT PHENOMENA | DRIVEN FERROELECTRIC POLARIZATION

magnetostriction | ferroelectric field effect | spin-orbit coupling | 75.70.Tj spin-orbit effects | 77.55.Nv multiferroic/magnetoelectric films | 75.85.+t magnetoelectric effects | electromagnon | exchange bias | 77.80.-e ferroelectricity and antiferroelectricity | Time-reversal and space-inversion symmetries | 75.80.+q magnetomechanical effects | skyrmion | multiferroicity and magnetoelectricity | ferroelectric domain | multiferroics | spinâ€"orbit coupling | THIN-FILMS | HEXAGONAL FERROELECTRICITY | PHYSICS, CONDENSED MATTER | DOMAIN-WALLS | ELECTRIC-FIELD CONTROL | 180-DEGREES MAGNETIZATION REVERSAL | TUNNEL-JUNCTIONS | ANISOTROPIC SUPEREXCHANGE INTERACTION | EMERGENT PHENOMENA | DRIVEN FERROELECTRIC POLARIZATION

Journal Article

Applied Mathematics and Computation, ISSN 0096-3003, 2010, Volume 217, Issue 6, pp. 2513 - 2519

Let H( B) denote the space of all holomorphic functions on the unit ball B of C n . Let φ be a holomorphic self-map of B and g ∈ H( B) such that g(0) = 0. In...

Generalized composition operator | F( p, q, s) space | Bloch-type space | F(p, q, s) space | INTEGRAL-TYPE OPERATORS | MATHEMATICS, APPLIED | C-N | MIXED-NORM SPACES | H-INFINITY | WEIGHTED BERGMAN SPACES | UNIT BALL | PRODUCTS | RIEMANN-STIELTJES OPERATORS | ZYGMUND SPACES | Operators | Mathematical models | Computation | Mathematical analysis | Images

Generalized composition operator | F( p, q, s) space | Bloch-type space | F(p, q, s) space | INTEGRAL-TYPE OPERATORS | MATHEMATICS, APPLIED | C-N | MIXED-NORM SPACES | H-INFINITY | WEIGHTED BERGMAN SPACES | UNIT BALL | PRODUCTS | RIEMANN-STIELTJES OPERATORS | ZYGMUND SPACES | Operators | Mathematical models | Computation | Mathematical analysis | Images

Journal Article

3.
Full Text
Some integral‐type operators from F(p,q,s) spaces to mixed‐norm spaces on the unit ball

Mathematische Nachrichten, ISSN 0025-584X, 08/2014, Volume 287, Issue 11-12, pp. 1298 - 1311

We discuss the boundedness and compactness of some integral‐type operators acting from F(p,q,s) spaces to mixed‐norm spaces on the unit ball of Cn.

F(p,q,s) spaces | 32A37 | 32A38 | 47B38 | 46F12 | mixed‐norm spaces | 47G10 | 47B33 | Integral‐type operators | 32H02 | Mixed-norm spaces | Integral-type operators | mixed-norm spaces | BMOA | C-N | HARDY-SPACES | MATHEMATICS | BLOCH-TYPE SPACES | RIEMANN-STIELTJES OPERATORS | ZYGMUND SPACES | F(p, q, s) spaces | EXTENDED CESARO OPERATORS | COMPACTNESS | BERGMAN SPACES

F(p,q,s) spaces | 32A37 | 32A38 | 47B38 | 46F12 | mixed‐norm spaces | 47G10 | 47B33 | Integral‐type operators | 32H02 | Mixed-norm spaces | Integral-type operators | mixed-norm spaces | BMOA | C-N | HARDY-SPACES | MATHEMATICS | BLOCH-TYPE SPACES | RIEMANN-STIELTJES OPERATORS | ZYGMUND SPACES | F(p, q, s) spaces | EXTENDED CESARO OPERATORS | COMPACTNESS | BERGMAN SPACES

Journal Article

Applied Mathematics and Computation, ISSN 0096-3003, 2012, Volume 218, Issue 9, pp. 4967 - 4972

Let H ( D ) denote the space of all analytic functions on the open unit disk D of C . Let φ be an analytic self-map of D and u ∈ H ( D ) . In this paper, the...

Generalized weighted composition operator | F( p, q, s) space | Weighted differentiation composition operator | Bloch-type space | F(p, q, s) space | BERGMAN-TYPE SPACES | MATHEMATICS, APPLIED | PRODUCTS | NORM | DIFFERENTIATION | Disks | Operators | Mathematical models | Analytic functions | Computation | Mathematical analysis

Generalized weighted composition operator | F( p, q, s) space | Weighted differentiation composition operator | Bloch-type space | F(p, q, s) space | BERGMAN-TYPE SPACES | MATHEMATICS, APPLIED | PRODUCTS | NORM | DIFFERENTIATION | Disks | Operators | Mathematical models | Analytic functions | Computation | Mathematical analysis

Journal Article

Mathematische Zeitschrift, ISSN 0025-5874, 06/2010, Volume 265, Issue 2, pp. 451 - 480

Let s, tau is an element of R and q is an element of (0, infinity]. We introduce Besov-type spaces. (B) over dot(p, q)(s, tau) (R-n) for p is an element of (0,...

Calderón reproducing formula | Triebel-Lizorkin space | Embedding | φ -transform | Q space | Tent space | Lifting | Atom | Besov space | Molecule | Hardy-Hausdorff space | Hausdorff capacity | Almost diagonal operator | Dual space | phi-transform | REAL VARIABLES | Q(P) SPACES | Calderon reproducing formula | MOLECULAR DECOMPOSITIONS | MATHEMATICS | THEOREMS | TRANSFORM | MORREY SPACES

Calderón reproducing formula | Triebel-Lizorkin space | Embedding | φ -transform | Q space | Tent space | Lifting | Atom | Besov space | Molecule | Hardy-Hausdorff space | Hausdorff capacity | Almost diagonal operator | Dual space | phi-transform | REAL VARIABLES | Q(P) SPACES | Calderon reproducing formula | MOLECULAR DECOMPOSITIONS | MATHEMATICS | THEOREMS | TRANSFORM | MORREY SPACES

Journal Article

Applied Mathematics and Computation, ISSN 0096-3003, 2012, Volume 218, Issue 9, pp. 5414 - 5421

The boundedness and compactness of the integral-type operator L φ g ( f ) ( z ) = ∫ 0 1 R f ( φ ( tz ) ) g ( tz ) dt t , z ∈ B , where g is a holomorphic...

Unit ball | Integral-type operator | Normal weight | Compactness | Boundedness | F( p, q, s) space | Bloch-type space | F(p, q, s) space | MATHEMATICS, APPLIED | C-N | POLYDISK | H-INFINITY | PRODUCTS | GENERALIZED COMPOSITION OPERATORS | ZYGMUND SPACES | EXTENDED CESARO OPERATORS | Operators | Mathematical models | Computation | Mathematical analysis

Unit ball | Integral-type operator | Normal weight | Compactness | Boundedness | F( p, q, s) space | Bloch-type space | F(p, q, s) space | MATHEMATICS, APPLIED | C-N | POLYDISK | H-INFINITY | PRODUCTS | GENERALIZED COMPOSITION OPERATORS | ZYGMUND SPACES | EXTENDED CESARO OPERATORS | Operators | Mathematical models | Computation | Mathematical analysis

Journal Article

Applied Mathematics and Computation, ISSN 0096-3003, 2011, Volume 218, Issue 4, pp. 1443 - 1448

In this note we characterize the boundedness and compactness of the composition operator from the general function space F( p, q, s) to the nth weighted-type...

F( p, q, s) space | nth weighted-type space | Composition operator | F(p, q, s) space | MATHEMATICS, APPLIED | BLOCH-TYPE SPACES | NORM | H-INFINITY | DIFFERENTIATION | Discs | Disks | Operators | Mathematical models | Function space | Computation

F( p, q, s) space | nth weighted-type space | Composition operator | F(p, q, s) space | MATHEMATICS, APPLIED | BLOCH-TYPE SPACES | NORM | H-INFINITY | DIFFERENTIATION | Discs | Disks | Operators | Mathematical models | Function space | Computation

Journal Article

Positivity, ISSN 1385-1292, 02/2016, Volume 20, Issue 4, pp. 999 - 1014

Let and let X be a p-convex Banach function space over a -finite measure . We combine the structure of the spaces and for constructing the new space , where is...

Extension | Operator | q-summing | Factorization | p-convex | MATHEMATICS | MULTIPLICATION OPERATORS

Extension | Operator | q-summing | Factorization | p-convex | MATHEMATICS | MULTIPLICATION OPERATORS

Journal Article

Journal of Functional Analysis, ISSN 0022-1236, 2008, Volume 255, Issue 10, pp. 2760 - 2809

Let s ∈ R , τ ∈ [ 0 , ∞ ) , p ∈ ( 1 , ∞ ) and q ∈ ( 1 , ∞ ] . In this paper, we introduce a new class of function spaces F ˙ p , q s , τ ( R n ) which unify...

Triebel–Lizorkin space | Q space | Tent space | Capacity | Dual space | Calderón reproducing formula | Triebel-Lizorkin space | REAL VARIABLES | Q(P) SPACES | Calderon reproducing formula | DECOMPOSITION | MATHEMATICS | THEOREMS | TRANSFORM | MORREY SPACES | Questions and answers

Triebel–Lizorkin space | Q space | Tent space | Capacity | Dual space | Calderón reproducing formula | Triebel-Lizorkin space | REAL VARIABLES | Q(P) SPACES | Calderon reproducing formula | DECOMPOSITION | MATHEMATICS | THEOREMS | TRANSFORM | MORREY SPACES | Questions and answers

Journal Article

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, ISSN 0022-247X, 05/2014, Volume 413, Issue 1, pp. 1 - 19

Let 1 <= p < 2 and let L-p = L-p(0, 11 be the classical L-p-space of all (classes of) p-integrable functions on [0, 1]. It is known that any subspace in L-p...

MATHEMATICS, APPLIED | INEQUALITIES | KRUGLOV PROPERTY | NORMS | Peetre K-functional | SUMS | q-concave function | MATHEMATICS | OPERATOR | REARRANGEMENT-INVARIANT SPACES | p-convex function | L-p-space | Independent random variables | Orlicz sequence space

MATHEMATICS, APPLIED | INEQUALITIES | KRUGLOV PROPERTY | NORMS | Peetre K-functional | SUMS | q-concave function | MATHEMATICS | OPERATOR | REARRANGEMENT-INVARIANT SPACES | p-convex function | L-p-space | Independent random variables | Orlicz sequence space

Journal Article

Positivity, ISSN 1385-1292, 06/2017, Volume 21, Issue 2, pp. 593 - 632

To each power-norm ((E-n, parallel to (.) parallel to (n)) : n is an element of N) based on a given Banach space E, we associate two maximal symmetric sequence...

(p, q)-summing norm | Multinorms | Rademacher norm | p-multinorms | (p, q)-concave norm | Power-norms | MATHEMATICS | (p,q)-concave norm | (p,q)-summing norm | Formulations | Norms | Banach spaces | Banach space | Mathematical analysis | Lattices

(p, q)-summing norm | Multinorms | Rademacher norm | p-multinorms | (p, q)-concave norm | Power-norms | MATHEMATICS | (p,q)-concave norm | (p,q)-summing norm | Formulations | Norms | Banach spaces | Banach space | Mathematical analysis | Lattices

Journal Article

Taiwanese Journal of Mathematics, ISSN 1027-5487, 07/2013, Volume 17, Issue 4, pp. 1211 - 1225

Let H(D) denote the space of all holomorphic functions on the unit disk D of C. Let phi be a holomorphic self-map of D, n be a positive integer and g is an...

Bloch-type space | Generalized integration operator | F(p,Q,S) space | MIXED-NORM SPACES | HARDY-SPACES | H-INFINITY | ANALYTIC-FUNCTIONS | F(p,q, s) space | MATHEMATICS | PRODUCTS | ZYGMUND SPACES | BOUNDED MEAN-OSCILLATION | DIFFERENTIATION | BERGMAN

Bloch-type space | Generalized integration operator | F(p,Q,S) space | MIXED-NORM SPACES | HARDY-SPACES | H-INFINITY | ANALYTIC-FUNCTIONS | F(p,q, s) space | MATHEMATICS | PRODUCTS | ZYGMUND SPACES | BOUNDED MEAN-OSCILLATION | DIFFERENTIATION | BERGMAN

Journal Article

13.
Full Text
Scenario development for the observation of alpha-driven instabilities in JET DT plasmas

Nuclear Fusion, ISSN 0029-5515, 06/2018, Volume 58, Issue 8, p. 82005

In DT plasmas, toroidal Alfven eigenmodes (TAEs) can be made unstable by the alpha particles resulting from fusion reactions, and may induce a significant...

JET | alphas | TAEs | scenario | instabilities | DT plasmas | TRANSPORT | ALFVEN EIGENMODES | PARTICLE PHYSICS | PHYSICS, FLUIDS & PLASMAS | Q-PROFILE | Plasma Physics | Physics | Fusion, Plasma and Space Physics | Fysik | Physical Sciences | Naturvetenskap | Fusion, plasma och rymdfysik | Natural Sciences

JET | alphas | TAEs | scenario | instabilities | DT plasmas | TRANSPORT | ALFVEN EIGENMODES | PARTICLE PHYSICS | PHYSICS, FLUIDS & PLASMAS | Q-PROFILE | Plasma Physics | Physics | Fusion, Plasma and Space Physics | Fysik | Physical Sciences | Naturvetenskap | Fusion, plasma och rymdfysik | Natural Sciences

Journal Article

Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 10/2018, Volume 466, Issue 2, pp. 1359 - 1372

Let Dμ,p be a Dirichlet type space induced by a positive parameter p and a positive Borel measure μ on the open unit disk. Denote by M(Dμ,p) the Möbius...

Inner functions | Möbius invariant spaces | Carleson measures | Dirichlet type spaces | MATHEMATICS | MATHEMATICS, APPLIED | Q(P) SPACES | Mobius invariant spaces

Inner functions | Möbius invariant spaces | Carleson measures | Dirichlet type spaces | MATHEMATICS | MATHEMATICS, APPLIED | Q(P) SPACES | Mobius invariant spaces

Journal Article

Acta Mathematica Sinica, English Series, ISSN 1439-8516, 6/2018, Volume 34, Issue 6, pp. 1001 - 1014

The stability is an expected property for functions, which is widely considered in the study of approximation theory and wavelet analysis. In this paper, we...

Mixed Lebesgue spaces | 46B15 | 41A58 | 42C40 | semi-convolution | Mathematics, general | Mathematics | L p , q -stability | 42C15 | stability | Wavelet analysis | Stability analysis | Mathematical analysis | Approximations

Mixed Lebesgue spaces | 46B15 | 41A58 | 42C40 | semi-convolution | Mathematics, general | Mathematics | L p , q -stability | 42C15 | stability | Wavelet analysis | Stability analysis | Mathematical analysis | Approximations

Journal Article

Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 07/2018, Volume 463, Issue 2, pp. 659 - 680

For 0

−1 the space of Dirichlet type Dαp consists of those functions f which are analytic in the unit disc D and satisfy ∫D(1−|z|)α|f′(z)|pdA(z)<∞....

Dirichlet spaces | Hardy spaces | Superposition operators | MATHEMATICS | MATHEMATICS, APPLIED | Q(P) SPACES | CARLESON MEASURES | UNIVALENT-FUNCTIONS | GROWTH | MULTIPLIERS | ANALYTIC-FUNCTIONS | ZEROS | Mathematics - Complex Variables

Journal Article