2017, Mathematical surveys and monographs, ISBN 0821843605, Volume no. 216., ix, 430 pages

Book

2012, Mathematical surveys and monographs, ISBN 9780821890868, Volume no. 184., xi, 171

Book

2009, Princeton mathematical series, ISBN 0691137773, Volume 48, xvi, 677

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial...

Differential equations, Elliptic | Quasiconformal mappings | Mathematics

Differential equations, Elliptic | Quasiconformal mappings | Mathematics

Book

2012, Contemporary mathematics, ISBN 0821853406, Volume 575, vii, 375

Book

2020, Springer Monographs in Mathematics, ISBN 3030320677, 504

This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There...

eBook

GAFA Geometric And Functional Analysis, ISSN 1016-443X, 09/2007, Volume 17, Issue 3, pp. 645 - 664

We show that a quasiconformal mapping between two proper, locally Ahlfors Q-regular metric spaces, Q > 1, is absolutely continuous on almost every curve. We...

quasiconformal mappings | 30C65 | 26B30 | Absolute continuity | Analysis | metricmeasure spaces | Mathematics | Metricmeasure spaces | Quasiconformal mappings | DEFINITION | MATHEMATICS | SPACES | RIGIDITY | absolute continuity

quasiconformal mappings | 30C65 | 26B30 | Absolute continuity | Analysis | metricmeasure spaces | Mathematics | Metricmeasure spaces | Quasiconformal mappings | DEFINITION | MATHEMATICS | SPACES | RIGIDITY | absolute continuity

Journal Article

1993, ISBN 3540566481, Volume Folge 3, Bd. 26., x, 213

Book

Advances in Mathematics, ISSN 0001-8708, 01/2016, Volume 288, pp. 1069 - 1096

Suppose that f:D→D′ is a quasiconformal mapping, where D and D′ are domains in Rn, and that D is a broad domain. We show that for every arcwise connected...

Broad domain | Quasisymmetry | Quasiconformal mapping | Weak quasisymmetry | [formula omitted] set | LLC | set | MATHEMATICS | HOMEOMORPHISMS | LOEWNER SPACES | MAPS | LLC2 set | QUASICONFORMALITY | DOMAINS

Broad domain | Quasisymmetry | Quasiconformal mapping | Weak quasisymmetry | [formula omitted] set | LLC | set | MATHEMATICS | HOMEOMORPHISMS | LOEWNER SPACES | MAPS | LLC2 set | QUASICONFORMALITY | DOMAINS

Journal Article

Acta Mathematica Sinica, English Series, ISSN 1439-8516, 9/2015, Volume 31, Issue 9, pp. 1379 - 1390

In this paper, we prove a local Hölder estimate of (K 1,K 2)-quasiconformal mappings between n-dimensional hypersurfaces of R n+1 under an assumption of...

30C65 | co-area formula | ( K 1 , K 2 )-quasiconformal mappings | Mathematics, general | isoperimetric inequality | 53A07 | Mathematics | 30L10 | (K 1 ,K 2 )-quasiconformal mappings | MATHEMATICS | MATHEMATICS, APPLIED | (K-1, K-2)-quasiconformal mappings | REGULARITY | Studies | Mapping | Topological manifolds | Mathematical analysis

30C65 | co-area formula | ( K 1 , K 2 )-quasiconformal mappings | Mathematics, general | isoperimetric inequality | 53A07 | Mathematics | 30L10 | (K 1 ,K 2 )-quasiconformal mappings | MATHEMATICS | MATHEMATICS, APPLIED | (K-1, K-2)-quasiconformal mappings | REGULARITY | Studies | Mapping | Topological manifolds | Mathematical analysis

Journal Article

Mathematische Nachrichten, ISSN 0025-584X, 08/2018, Volume 291, Issue 11-12, pp. 1757 - 1768

We consider the class of all sense‐preserving harmonic mappings f=h+g¯ of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr...

and analytic functions | K‐quasiconformal mappings | Schwarz lemma | Primary: 30A10 | 30B10 | locally univalent | 30C62 | Bohr radius | 31A05; Secondary: 30C75 | Bloch space | harmonic | K-quasiconformal mappings | MATHEMATICS | POWER-SERIES | THEOREM | CONSTANT | BLOCH FUNCTIONS

and analytic functions | K‐quasiconformal mappings | Schwarz lemma | Primary: 30A10 | 30B10 | locally univalent | 30C62 | Bohr radius | 31A05; Secondary: 30C75 | Bloch space | harmonic | K-quasiconformal mappings | MATHEMATICS | POWER-SERIES | THEOREM | CONSTANT | BLOCH FUNCTIONS

Journal Article

Sbornik Mathematics, ISSN 1064-5616, 2012, Volume 203, Issue 10, pp. 1383 - 1410

For homeomorphisms phi : Omega -> Omega' on Euclidean domains in R-n, n >= 2, necessary and sufficient conditions ensuring that the inverse mapping belongs to...

Generalized quasiconformal mapping | Approximate differentiability | Sobolev class of mappings | Composition operator | Distortion and codistortion of mappings | distortion and codistortion of mappings | MATHEMATICS | generalized quasiconformal mapping | composition operator | COMPOSITION OPERATORS | HOMEOMORPHISMS | MAPS | SPACES | approximate differentiability | FINITE DISTORTION

Generalized quasiconformal mapping | Approximate differentiability | Sobolev class of mappings | Composition operator | Distortion and codistortion of mappings | distortion and codistortion of mappings | MATHEMATICS | generalized quasiconformal mapping | composition operator | COMPOSITION OPERATORS | HOMEOMORPHISMS | MAPS | SPACES | approximate differentiability | FINITE DISTORTION

Journal Article

2006, 2nd ed., University lecture series, ISBN 0821836447, Volume 38, viii, 162

Book

Filomat, ISSN 0354-5180, 1/2013, Volume 27, Issue 2, pp. 391 - 402

We study images of the unit ball under certain special classes of quasiregular mappings. For homeomorphic, i.e., quasiconformal mappings problems of this type...

Dilatation | College mathematics | Quasiball | Quasiregular mapping | Closed quasiregular mapping | Property P | Quasiconformal mapping | Maximal (minimal) multiplicity | Conformal modulus | MATHEMATICS | closed quasiregular mapping | MATHEMATICS, APPLIED | quasiregular mapping | property P-1 | property P-2 | maximal (minimal) multiplicity | conformal modulus | quasiball | Mathematics - Complex Variables

Dilatation | College mathematics | Quasiball | Quasiregular mapping | Closed quasiregular mapping | Property P | Quasiconformal mapping | Maximal (minimal) multiplicity | Conformal modulus | MATHEMATICS | closed quasiregular mapping | MATHEMATICS, APPLIED | quasiregular mapping | property P-1 | property P-2 | maximal (minimal) multiplicity | conformal modulus | quasiball | Mathematics - Complex Variables

Journal Article

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, ISSN 0022-247X, 06/2015, Volume 426, Issue 2, pp. 635 - 658

In this paper, we obtain a sufficient condition for pluriharmonic mappings on the Euclidean unit ball B-n to be univalent, sense-preserving, quasiconformal and...

Linearly connected domain | LINEARLY INVARIANT FAMILIES | MATHEMATICS, APPLIED | PLANAR HARMONIC-MAPPINGS | CONNECTED DOMAINS | Univalent mapping | DISTORTION-THEOREMS | UNIT BALL | Pluriharmonic mapping | MATHEMATICS | Schwarz lemma | STARLIKE | QUASI-CONFORMAL EXTENSIONS | BLOCH CONSTANTS | VARIABLES | HOLOMORPHIC MAPPINGS | Quasiconformal mapping | Landau and Bloch theorems

Linearly connected domain | LINEARLY INVARIANT FAMILIES | MATHEMATICS, APPLIED | PLANAR HARMONIC-MAPPINGS | CONNECTED DOMAINS | Univalent mapping | DISTORTION-THEOREMS | UNIT BALL | Pluriharmonic mapping | MATHEMATICS | Schwarz lemma | STARLIKE | QUASI-CONFORMAL EXTENSIONS | BLOCH CONSTANTS | VARIABLES | HOLOMORPHIC MAPPINGS | Quasiconformal mapping | Landau and Bloch theorems

Journal Article

Advances in Mathematics, ISSN 0001-8708, 07/2019, Volume 351, pp. 479 - 494

For all n≥2, we construct a metric space (X,d) and a quasisymmetric mapping f:[0,1]n→X with the property that f−1 is not absolutely continuous with respect to...

Metric space | Quasiconformal mapping | Absolute continuity | MATHEMATICS

Metric space | Quasiconformal mapping | Absolute continuity | MATHEMATICS

Journal Article

ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, ISSN 1239-629X, 2019, Volume 44, Issue 1, pp. 103 - 123

Quasiconformal maps in the plane are orientation preserving homeomorphisms that satisfy certain distortion inequalities; infinitesimally, they map circles to...

MATHEMATICS | Hausdorff dimension | Quasiconformal mapping | Beltrami equation

MATHEMATICS | Hausdorff dimension | Quasiconformal mapping | Beltrami equation

Journal Article

1983, Lecture notes in mathematics, ISBN 0387119892, Volume 978, vi, 177

Book

1974, ISBN 9780856260056, 553

Book

Advances in Mathematics, ISSN 0001-8708, 2011, Volume 226, Issue 4, pp. 3579 - 3621

In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for...

Grand Triebel–Lizorkin space | Fractional Hajłasz gradient | Hajłasz–Besov space | Quasisymmetric mapping | Triebel–Lizorkin space | Hajłasz–Triebel–Lizorkin space | Quasiconformal mapping | Metric measure space | Besov space | Grand Besov space | Secondary | Hajłasz-Besov space | Hajłasz-Triebel-Lizorkin space | Grand Triebel-Lizorkin space | Primary | Triebel-Lizorkin space | Fractional Hajlasz gradient | METRIC-SPACES | INEQUALITY | Hajlasz-Besov space | MATHEMATICS | DECOMPOSITIONS | DIMENSION | SOBOLEV FUNCTIONS | Hajlasz-Triebel-Lizorkin space

Grand Triebel–Lizorkin space | Fractional Hajłasz gradient | Hajłasz–Besov space | Quasisymmetric mapping | Triebel–Lizorkin space | Hajłasz–Triebel–Lizorkin space | Quasiconformal mapping | Metric measure space | Besov space | Grand Besov space | Secondary | Hajłasz-Besov space | Hajłasz-Triebel-Lizorkin space | Grand Triebel-Lizorkin space | Primary | Triebel-Lizorkin space | Fractional Hajlasz gradient | METRIC-SPACES | INEQUALITY | Hajlasz-Besov space | MATHEMATICS | DECOMPOSITIONS | DIMENSION | SOBOLEV FUNCTIONS | Hajlasz-Triebel-Lizorkin space

Journal Article

Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 07/2017, Volume 451, Issue 2, pp. 1026 - 1044

Let ϕ be a quasiconformal mapping, and let Tϕ be the composition operator which maps f to f∘ϕ. Since ϕ may not be bi-Lipschitz, the composition operator need...

Quasiconformal mappings | Sobolev spaces | Fractional smoothness | Composition operator | MATHEMATICS | MATHEMATICS, APPLIED | INVERSE CONDUCTIVITY PROBLEM | PLANE | STABILITY

Quasiconformal mappings | Sobolev spaces | Fractional smoothness | Composition operator | MATHEMATICS | MATHEMATICS, APPLIED | INVERSE CONDUCTIVITY PROBLEM | PLANE | STABILITY

Journal Article

No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.