X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
engineering, electrical & electronic (22) 22
saliency detection (19) 19
feature extraction (15) 15
object detection (15) 15
rgb-d (14) 14
computer science, artificial intelligence (13) 13
image color analysis (11) 11
salient object detection (11) 11
computer science, information systems (10) 10
computer science (9) 9
computer science, software engineering (9) 9
computer science, theory & methods (8) 8
image detection (8) 8
object recognition (8) 8
rgb-d image (8) 8
algorithms (7) 7
artificial neural networks (7) 7
fuses (7) 7
fusion (7) 7
salience (7) 7
index medicus (6) 6
sensors (6) 6
computer-vision (5) 5
convolutional neural networks (5) 5
image segmentation (5) 5
neural networks (5) 5
rgb-d saliency detection (5) 5
robots (5) 5
cameras (4) 4
computer communication networks (4) 4
data sets (4) 4
multimedia (4) 4
multimedia information systems (4) 4
neuronales netzwerk (4) 4
recognition (4) 4
region detection (4) 4
rgb-d images (4) 4
robotics (4) 4
saliency map (4) 4
special purpose and application-based systems (4) 4
three-dimensional displays (4) 4
analysis (3) 3
channels (3) 3
chemical technology (3) 3
chemistry, analytical (3) 3
color (3) 3
computational modeling (3) 3
computer science - computer vision and pattern recognition (3) 3
computer vision (3) 3
data structures, cryptology and information theory (3) 3
electrochemistry (3) 3
features (3) 3
imaging science & photographic technology (3) 3
instruments & instrumentation (3) 3
localization (3) 3
machine vision (3) 3
mapping (3) 3
maps (3) 3
mathematical models (3) 3
model (3) 3
navigation (3) 3
predictive models (3) 3
rgb-d salient object detection (3) 3
segmentation (3) 3
state of the art (3) 3
studies (3) 3
visual attention (3) 3
visualization (3) 3
3d face recognition (2) 2
accuracy (2) 2
adaptation models (2) 2
article (2) 2
artificial intelligence (2) 2
attention - physiology (2) 2
bayesian analysis (2) 2
benchmark testing (2) 2
classification (2) 2
clustering (2) 2
cognition (2) 2
color imagery (2) 2
computer architecture (2) 2
computer simulation (2) 2
computer vision and pattern recognition (2) 2
convolution (2) 2
convolutional neural network (2) 2
cues (2) 2
deep learning (2) 2
depth map (2) 2
error analysis (2) 2
estimation (2) 2
face recognition (2) 2
feature selection (2) 2
framework (2) 2
humans (2) 2
image (2) 2
image classification (2) 2
image processing, computer-assisted - methods (2) 2
image resolution (2) 2
iterative methods (2) 2
kinect (2) 2
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


IEEE Transactions on Image Processing, ISSN 1057-7149, 05/2019, Volume 28, Issue 5, pp. 2126 - 2139
Journal Article
IEEE Transactions on Image Processing, ISSN 1057-7149, 2020, Volume 29, pp. 4296 - 4307
To solve the saliency detection problem in RGB-D images, the depth information plays a critical role in distinguishing salient objects or foregrounds from... 
Image color analysis | Fuses | selective deep fusion | Layout | Estimation | Channel estimation | Feature extraction | inter-image correspondences | low-level saliency | Saliency detection | RGB-D saliency detection | VIDEO | OBJECT DETECTION | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article
Journal Article
Sensors (Switzerland), ISSN 1424-8220, 08/2015, Volume 15, Issue 9, pp. 21054 - 21074
This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing... 
RGB-D object segmentation | Unknown object detection | Saliency detection | ELECTROCHEMISTRY | ATTENTION | CHEMISTRY, ANALYTICAL | INSTRUMENTS & INSTRUMENTATION | saliency detection | unknown object detection | Cues | Histograms | Correlation | Hypotheses | Color | Magnetorheological fluids | Indoor | Three dimensional
Journal Article
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743, 2017, Volume 10528, pp. 459 - 468
Conference Proceeding
IEEE Transactions on Image Processing, ISSN 1057-7149, 06/2019, Volume 28, Issue 6, pp. 2825 - 2835
Journal Article
IEEE Transactions on Multimedia, ISSN 1520-9210, 4/2020, pp. 1 - 1
In this paper, an attentive cross-modal fusion (ACMF) network is proposed for RGB-D salient object detection. The proposed method selectively fuses features in... 
RGB-D salient object detection | Cross-modal attention | residual attention | fusion refinement network
Journal Article
Pattern Recognition, ISSN 0031-3203, 02/2019, Volume 86, pp. 376 - 385
•Using CNNs to fuse RGB and depth data with only single path is not sufficient.•Both global reasoning and local capturing are important for saliency... 
RGB-D | Multi-path | Convolutional neural networks | Saliency detection | VIDEO | DETECTION MODEL | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | ENGINEERING, ELECTRICAL & ELECTRONIC | Machine vision | Neural networks | Mechanical engineering
Journal Article
IEEE Transactions on Image Processing, ISSN 1057-7149, 01/2018, Volume 27, Issue 1, pp. 121 - 134
Journal Article
Proceedings of International Conference on internet multimedia computing and service, 07/2014, pp. 23 - 27
Human vision system understands the environment from 3D perception. However, most existing saliency detection algorithms detect the salient foreground based on... 
depth map | RGB-D image | saliency detection | Depth map | Saliency detection
Conference Proceeding
IEEE Signal Processing Letters, ISSN 1070-9908, 05/2017, Volume 24, Issue 5, pp. 663 - 667
Automatic detection of salient objects in images has gained its popularity in computer vision field for its usage in numerous vision tasks in recent years.... 
Three-dimensional displays | saliency fusion | Image color analysis | Two dimensional displays | Signal processing algorithms | Object detection | Transforms | RGB-D image | saliency map | Minimum barrier distance (MBD) | Optimization | salient object detection | REGION DETECTION | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article
Zidonghua Xuebao/Acta Automatica Sinica, ISSN 0254-4156, 10/2017, Volume 43, Issue 10, pp. 1810 - 1828
Journal Article
2016 IEEE International Conference on Multimedia and Expo (ICME), ISSN 1945-7871, 07/2016, Volume 2016-, pp. 1 - 6
Salient object detection aims to detect the most attractive objects in images, which has been widely used as a fundamental of various multimedia applications.... 
Algorithm design and analysis | saliency evolution | Image color analysis | Fuses | Automata | Clustering algorithms | Object detection | RGB-D image | Software | Salient object detection | Multimedia | Maps | Conferences | Evolution | Exposure | Object recognition | Channels | Image detection
Conference Proceeding
IEEE Signal Processing Letters, ISSN 1070-9908, 4/2020, pp. 1 - 1
Most of the existing RGB-D saliency detectors have tried different strategies to fuse RGB and depth information to generate better saliency detection results.... 
triple-complementary network | saliency fusion | RGB-D saliency detection
Journal Article
IEEE Access, ISSN 2169-3536, 2019, Volume 7, pp. 55277 - 55284
RGB-D (red, green, blue, and depth) salient object detection aims to identify the most visually distinctive objects in a pair of color and depth images. Based... 
Fuses | Image color analysis | edge-preserving | switch map | Switches | Object detection | Streaming media | Feature extraction | RGB-D salient object detection | Saliency detection | COMPUTER SCIENCE, INFORMATION SYSTEMS | TELECOMMUNICATIONS | ENGINEERING, ELECTRICAL & ELECTRONIC
Journal Article
2019 IEEE International Conference on Image Processing (ICIP), 09/2019, pp. 3925 - 3929
In this paper, we propose a two-stream refinement network for RGB-D saliency detection. A fusion refinement module is designed to fuse output features from... 
Visualization | Fusion Refinement Module | Convolution | Fuses | Object detection | RGB-D Saliency | Predictive models | Feature extraction | Two-stream Network | Deep Learning | Propagation-based Refinement | Saliency detection
Conference Proceeding
IEEE Signal Processing Letters, ISSN 1070-9908, 04/2019, Volume 26, Issue 4, pp. 552 - 556
Recent saliency detectors use depth to improve the precision of the results. However, most of the existing RGB-D saliency detectors only treat depth as an... 
Training | CNN | Fuses | Computational modeling | Detectors | Benchmark testing | Feature extraction | depth-aware | Saliency detection | RGB-D saliency detection | ENGINEERING, ELECTRICAL & ELECTRONIC | Error analysis | Sensors | Object recognition | Salience | Artificial neural networks
Journal Article
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.