X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (26) 26
multipartite tournaments (26) 26
discrete mathematics and combinatorics (14) 14
cycles (13) 13
theoretical computer science (12) 12
regular multipartite tournaments (10) 10
complementary cycles (7) 7
almost regular multipartite tournaments (6) 6
digraphs (5) 5
mathematics, applied (5) 5
multipartite tournament (4) 4
c-partite tournaments (3) 3
graph theory (3) 3
hamiltonian path (3) 3
lengths (3) 3
mathematical analysis (3) 3
pancyclic (3) 3
regular 3-partite tournament (3) 3
semicomplete multipartite digraphs (3) 3
3-partite tournaments (2) 2
applied mathematics (2) 2
c-greater-than-or-equal-to-5 (2) 2
connectivity (2) 2
cycle (2) 2
directed triangle free vertex (2) 2
fixed arc (2) 2
graphs (2) 2
locally semicomplete digraphs (2) 2
regular (2) 2
regular multipartite tournament (2) 2
subtournaments (2) 2
3-partite tournament (1) 1
[ math ] mathematics [math] (1) 1
acyclic disconnection (1) 1
adjacency matrix (1) 1
almost regular bipartite tournaments (1) 1
almost regular tournaments (1) 1
analysis (1) 1
arc (1) 1
bipartite graphs (1) 1
bipartite tournaments (1) 1
block design (1) 1
block designs (1) 1
circuits (1) 1
combinatorial analysis (1) 1
combinatorics (1) 1
componentwise complementary cycles (1) 1
computer science (1) 1
congestion (1) 1
convex and discrete geometry (1) 1
cycle factor (1) 1
cycles through given set of vertices (1) 1
design (1) 1
digraph (1) 1
directed strongly regular graphs (1) 1
diregular bipartite tournaments (1) 1
disengaging (1) 1
eigenvalues (1) 1
electrical engineering (1) 1
engineering design (1) 1
equitable partitions (1) 1
greedy algorithm (1) 1
hall's theorem (1) 1
hall’s theorem (1) 1
hamilton cycle (1) 1
hamiltonian cycles (1) 1
hamiltonian cycles and paths (1) 1
hamiltonian paths (1) 1
incomplete block-designs (1) 1
irregularities (1) 1
irregularity regular (1) 1
k-strong (1) 1
locally almost regular (1) 1
longest cycle (1) 1
longest paths (1) 1
mathematical modeling and industrial mathematics (1) 1
mathematics, general (1) 1
n-partite tournaments (1) 1
operational research (1) 1
ordinary differential equations (1) 1
orientation (1) 1
pancircuitous (1) 1
pancyclic oriented graphs (1) 1
pancyclicity (1) 1
partial balance (1) 1
path covering number combine (1) 1
paths (1) 1
paths through given number of vertices (1) 1
product (1) 1
regular 3-partite tournaments (1) 1
regular bipartite tournament (1) 1
regular bipartite tournaments (1) 1
regular digraphs (1) 1
regular graphs (1) 1
regular tournaments (1) 1
regular-graph design (1) 1
representations (1) 1
robustness (1) 1
semicomplete digraphs (1) 1
subtournament (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Discrete Mathematics, ISSN 0012-365X, 2007, Volume 307, Issue 24, pp. 3097 - 3129
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 07/2012, Volume 160, Issue 10-11, pp. 1524 - 1531
The acyclic disconnection of a digraph is the maximum number of components that can be obtained by deleting from the set of arcs of an acyclic subdigraph. We... 
Multipartite tournaments | Regular bipartite tournaments | Acyclic disconnection | DIGRAPH | MATHEMATICS, APPLIED | Mathematical analysis | Graph theory | Disengaging
Journal Article
Ars Combinatoria, ISSN 0381-7032, 2014, Volume 113, pp. 201 - 224
A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A digraph D is cycle complementary if there exist two vertex-disjoint... 
Multipartite tournaments | Almost regular multipartite tournaments | Complementary cycles | MATHEMATICS | LOCALLY SEMICOMPLETE DIGRAPHS | multipartite tournaments | complementary cycles | C-PARTITE TOURNAMENTS | almost regular multipartite tournaments
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 09/2013, Volume 161, Issue 13-14, pp. 2169 - 2177
Let be a digraph with vertex set and independence number . If , then the numbers and are the outdegree and indegree of , respectively. The global irregularity... 
Multipartite tournaments | Almost regular multipartite tournaments | Complementary cycles | MATHEMATICS, APPLIED | C-PARTITE TOURNAMENTS | Graphs | Theorems | Graph theory | Irregularities | Orientation | Mathematical analysis
Journal Article
Discrete Mathematics, ISSN 0012-365X, 05/2019, Volume 342, Issue 5, pp. 1223 - 1232
A -partite tournament is an orientation of a complete -partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament is... 
Multipartite tournament | Regular 3-partite tournament | Cycle | MATHEMATICS | ARC
Journal Article
Discrete Mathematics, ISSN 0012-365X, 01/2016, Volume 339, Issue 1, pp. 17 - 20
A -partite tournament is an orientation of a complete -partite graph. In 2006, Volkmann conjectured that every arc of a regular 3-partite tournament is... 
Regular multipartite tournament | 3-partite tournament | Multipartite tournament | Cycle | MATHEMATICS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2008, Volume 308, Issue 23, pp. 5516 - 5521
If is a vertex of a digraph , then we denote by and the outdegree and the indegree of , respectively. The global irregularity of a digraph is defined by If ,... 
Multipartite tournaments | Regular multipartite tournaments | Subtournaments | MATHEMATICS | CYCLES
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2009, Volume 309, Issue 10, pp. 3131 - 3149
The vertex set of a digraph is denoted by . A -partite tournament is an orientation of a complete -partite graph. In 1999, Yeo conjectured that each regular... 
Multipartite tournaments | Regular multipartite tournaments | Complementary cycles | C-GREATER-THAN-OR-EQUAL-TO-5 | MATHEMATICS | C-PARTITE TOURNAMENTS
Journal Article
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, ISSN 1001-506X, 10/2009, Volume 31, Issue 10, pp. 2513 - 2515
Journal Article
Discrete Applied Mathematics, ISSN 0166-218X, 2006, Volume 154, Issue 9, pp. 1437 - 1452
If is a vertex of a digraph , then we denote by and the outdegree and the indegree of , respectively. The global irregularity of a digraph is defined by over... 
Multipartite tournaments | Connectivity | Almost regular multipartite tournaments | MATHEMATICS, APPLIED | multipartite tournaments | connectivity | almost regular multipartite tournaments | CYCLES
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2004, Volume 281, Issue 1, pp. 255 - 266
A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. A... 
Multipartite tournaments | Regular multipartite tournaments | Complementary cycles | MATHEMATICS | LOCALLY SEMICOMPLETE DIGRAPHS | multipartite tournaments | complementary cycles | regular multipartite tournaments
Journal Article
Journal of Combinatorial Mathematics and Combinatorial Computing, ISSN 0835-3026, 02/2010, Volume 72, pp. 211 - 230
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2006, Volume 306, Issue 21, pp. 2724 - 2732
A tournament is an orientation of a complete graph, and in general a multipartite or -partite tournament is an orientation of a complete -partite graph. For we... 
Multipartite tournaments | Regular multipartite tournaments | Paths through given number of vertices | MATHEMATICS | multipartite tournaments | paths through given number of vertices | regular multipartite tournaments | CYCLES
Journal Article
Discrete Mathematics, ISSN 0012-365X, 10/2011, Volume 311, Issue 20, pp. 2272 - 2275
Volkmann and Winzen [L. Volkmann, S. Winzen, Strong subtournaments containing a given vertex in regular multipartite tournaments, Discrete Math. 308 (2008)... 
Multipartite tournament | Regular multipartite tournament | Subtournament | C-GREATER-THAN-OR-EQUAL-TO-5 | MATHEMATICS | MULTIPARTITE TOURNAMENTS | Mathematical analysis
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2004, Volume 281, Issue 1, pp. 267 - 276
A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. If x... 
Multipartite tournaments | Regular multipartite tournaments | Hamiltonian path | MATHEMATICS | multipartite tournaments | CYCLES | LENGTHS | DIGRAPHS | regular multipartite tournaments
Journal Article
Journal of the Korean Mathematical Society, ISSN 0304-9914, 2007, Volume 44, Issue 3, pp. 683 - 695
A tournament is an orientation f a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. In a... 
Cycles through given set of vertices | Multipartite tournaments | Regular multipartite tournaments | MATHEMATICS | MATHEMATICS, APPLIED | multipartite tournaments | DIGRAPHS | cycles through given set of vertices | regular multipartite tournaments
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2004, Volume 285, Issue 1, pp. 267 - 278
A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. If x... 
Multipartite tournaments | Almost regular multipartite tournaments | Hamiltonian path | MATHEMATICS | multipartite tournaments | DIGRAPHS | almost regular multipartite tournaments | CYCLES
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2004, Volume 283, Issue 1, pp. 217 - 229
If x is a vertex of a digraph D, then we denote by d (x) and d (x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is... 
Multipartite tournaments | Cycles | Almost regular multipartite tournaments | MATHEMATICS | cycles | multipartite tournaments | almost regular multipartite tournaments
Journal Article
Czechoslovak Mathematical Journal, ISSN 0011-4642, 9/2006, Volume 56, Issue 3, pp. 827 - 844
If x is a vertex of a digraph D, then we denote by d +(x) and d −(x) the outdegree and the indegree of x, respectively. A digraph D is called regular, if there... 
Ordinary Differential Equations | multipartite tournaments | Analysis | Convex and Discrete Geometry | Mathematics, general | Mathematics | cycles | Mathematical Modeling and Industrial Mathematics | regular multipartite tournaments | Cycles | Multipartite tournaments | Regular multipartite tournaments | MATHEMATICS | DIGRAPHS
Journal Article
Discrete Mathematics, ISSN 0012-365X, 2008, Volume 308, Issue 9, pp. 1710 - 1721
An orientation of a complete graph is a tournament, and an orientation of a complete -partite graph is a -partite tournament. If is a vertex of a digraph ,... 
Multipartite tournaments | Regular multipartite tournaments | Subtournaments | MATHEMATICS | multipartite tournaments | regular multipartite tournaments | subtournaments | CYCLES
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.