X
Search Filters
Format Format
Format Format
X
Sort by Item Count (A-Z)
Filter by Count
Journal Article (2022) 2022
Conference Proceeding (94) 94
Book Chapter (35) 35
Book / eBook (17) 17
Dissertation (16) 16
Publication (5) 5
Web Resource (4) 4
Government Document (2) 2
Newspaper Article (1) 1
more...
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
astronomy & astrophysics (804) 804
astrophysics (569) 569
cosmology and extragalactic astrophysics (456) 456
galaxy astrophysics (450) 450
physics - astrophysics of galaxies (340) 340
physics - cosmology and nongalactic astrophysics (293) 293
galaxies: dwarf (289) 289
local group (276) 276
spheroidal wave-functions (271) 271
solar and stellar astrophysics (261) 261
astrophysics - astrophysics of galaxies (253) 253
earth and planetary astrophysics (246) 246
physics - solar and stellar astrophysics (236) 236
dwarf spheroidal galaxy (228) 228
physics - instrumentation and methods for astrophysics (226) 226
physics - earth and planetary astrophysics (225) 225
physics - high energy astrophysical phenomena (224) 224
fourier-analysis (222) 222
galaxies (218) 218
spheroidal galaxies (203) 203
analysis (187) 187
dwarf spheroidal galaxies (186) 186
astrophysics - cosmology and nongalactic astrophysics (181) 181
dark matter (180) 180
galaxies: evolution (178) 178
mathematical analysis (172) 172
mathematical models (168) 168
mathematics, applied (165) 165
uncertainty (162) 162
physics (158) 158
milky-way (157) 157
stars (156) 156
evolution (145) 145
engineering, electrical & electronic (142) 142
prolate spheroidal wave functions (142) 142
mechanics (141) 141
stars & galaxies (139) 139
astrophysics, cosmology and astronomy (132) 132
galaxies: kinematics and dynamics (127) 127
astronomy (119) 119
wave functions (116) 116
galaxies: individual (115) 115
spheroidal galaxy (115) 115
mathematics (105) 105
optics (105) 105
digital sky survey (101) 101
galaxies : dwarf (101) 101
stellar populations (99) 99
dark-matter (98) 98
dwarf galaxies (97) 97
milky way (92) 92
galaxies: formation (90) 90
stars: abundances (89) 89
galaxies: stellar content (88) 88
galaxy: halo (88) 88
approximation (86) 86
mass (86) 86
metal-poor stars (84) 84
globular-clusters (83) 83
kinematics (82) 82
simulation (81) 81
elliptic galaxies (75) 75
physics, mathematical (75) 75
satellites (74) 74
algorithms (73) 73
large-magellanic-cloud (69) 69
luminosity (67) 67
materials science, multidisciplinary (67) 67
high energy astrophysical phenomena (66) 66
physics, multidisciplinary (66) 66
galaxies: abundances (65) 65
star-formation history (65) 65
eigenvalues (64) 64
photometry (64) 64
engineering (63) 63
galaxies : evolution (63) 63
spheroidal particles (63) 63
luminosity function (62) 62
prolate spheroidal wave function (61) 61
galactic halo (60) 60
galaxies : individual (60) 60
galaxies: structure (60) 60
velocity (60) 60
star & galaxy formation (59) 59
computer simulation (58) 58
metallicity (58) 58
abundance (57) 57
telecommunications (57) 57
clusters (56) 56
globular clusters: general (56) 56
spectroscopy (56) 56
cosmology (55) 55
research (55) 55
chemistry, physical (54) 54
scattering (54) 54
astrophysics - solar and stellar astrophysics (53) 53
density (52) 52
star-formation (51) 51
giant stars (49) 49
halo (49) 49
more...
Library Location Library Location
Language Language
Language Language
X
Sort by Item Count (A-Z)
Filter by Count
English (2153) 2153
Japanese (44) 44
Chinese (17) 17
French (13) 13
German (4) 4
Spanish (2) 2
Czech (1) 1
Italian (1) 1
Portuguese (1) 1
Russian (1) 1
more...
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Fourier Analysis and Applications, ISSN 1069-5869, 4/2016, Volume 22, Issue 2, pp. 383 - 412
.... These eigenfunctions generalize the famous classical prolate spheroidal wave functions (PSWFs), founded in 1960s by Slepian and his co-authors and corresponding to the case $$\alpha =\beta =0.$$ α = β = 0... 
Sturm–Liouville operators | 33E10 | Signal, Image and Speech Processing | Mathematics | 34L10 | Abstract Harmonic Analysis | 42C10 | Mathematical Methods in Physics | Finite weighted Fourier transform | Fourier Analysis | Prolate spheroidal wave functions | 41A30 | Approximations and Expansions | Band-limited functions | Eigenvalues and eigenfunctions | Special functions | Partial Differential Equations | Mathematics - Classical Analysis and ODEs
Journal Article
Journal of Computational and Applied Mathematics, ISSN 0377-0427, 04/2014, Volume 260, pp. 312 - 336
Journal Article
2002, Wiley series in microwave and optical engineering, ISBN 9780471031703, 315
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory... 
Spheroidal functions | Electromagnetic theory | Physics | Science | Electromagnetism
eBook
Applied and Computational Harmonic Analysis, ISSN 1063-5203, 07/2015, Volume 39, Issue 1, pp. 21 - 32
We provide conditions on a shift parameter and number of basic prolate spheroidal wave functions with a fixed bandwidth and time concentrated to a fixed duration such that the shifts of the basic... 
Paley–Wiener space | Frame | Time and band limiting | Bandpass prolate | Prolate spheroidal wave function | Riesz basis | Paley-Wiener space | MATHEMATICS, APPLIED | INVARIANT SPACES | UNCERTAINTY | SUBSPACES | TIME | FOURIER-ANALYSIS
Journal Article
Inverse Problems, ISSN 0266-5611, 02/2017, Volume 33, Issue 2, p. 25005
The problem of recovering a signal of finite duration from a piece of its Fourier transform was solved at Bell Labs in the 1960's, by exploiting a 'miracle': a... 
double concentration | matrix valued orthogonal polynomials | time-band limiting | TOMOGRAPHY | MATHEMATICS, APPLIED | SPHEROIDAL WAVE-FUNCTIONS | UNCERTAINTY | ORTHOGONAL POLYNOMIALS | PHYSICS, MATHEMATICAL | FOURIER-ANALYSIS
Journal Article
Journal of Computational Physics, ISSN 0021-9991, 07/2014, Volume 268, pp. 377 - 398
The first purpose of this paper is to provide further illustrations, from both theoretical and numerical perspectives, for the nonconvergence of h-refinement in hp-approximation by the prolate spheroidal wave functions (PSWFs... 
Condition number | Eigenvalues | Pseudospectral differentiation matrix | Collocation method | Prolate spheroidal wave functions | hp-convergence | Hp-convergence | 2ND-ORDER | SPECTRAL ELEMENT | PHYSICS, MATHEMATICAL | INTERPOLATION | COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS | PSEUDOSPECTRAL DIFFERENTIATION | INTEGRATION | QUADRATURE | UNCERTAINTY | POINTS | FOURIER-ANALYSIS | Illustrations | Approximation | Collocation | Mathematical analysis | Bandwidth | Mathematical models | Wave functions | Convergence
Journal Article