X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
abelian integral (9) 9
limit-cycles (7) 7
linear estimate (7) 7
mathematics, applied (6) 6
almost-all (5) 5
complex zeros (5) 5
hamiltonian system (5) 5
integrals (5) 5
number (5) 5
picard–fuchs equation (5) 5
upper bounds (5) 5
weakened hilbert's 16th problem (5) 5
mathematics (4) 4
picard-fuchs equation (4) 4
weakened hilbert’s 16th problem (4) 4
bifurcations (3) 3
chebyshev space (3) 3
cyclicity (3) 3
mathematics, interdisciplinary applications (3) 3
multidisciplinary sciences (3) 3
polynomials (3) 3
quadratic reversible center (3) 3
weakened hilbert 16th problem (3) 3
abelian integrals (2) 2
analysis (2) 2
complete elliptic integrals (2) 2
global bifurcation (2) 2
hilbert problem (2) 2
intervals (2) 2
kind (2) 2
n=2 (2) 2
quadratic centers (2) 2
saddles (2) 2
system (2) 2
weakened 16th hilbert problem (2) 2
zeros (2) 2
16th hilbert problem (1) 1
16th problem (1) 1
abelian-integrals (1) 1
algebra (1) 1
applied mathematics (1) 1
asymptotic expansions (1) 1
asymptotic series (1) 1
bifurcation (1) 1
bifurcation of limit cycles (1) 1
butterflies (1) 1
centers (1) 1
chebyshev approximation (1) 1
computation (1) 1
conics (1) 1
cuspidal loop (1) 1
cusps (1) 1
data mining (1) 1
degenerated polycycle (1) 1
degree-4 (1) 1
difference and functional equations (1) 1
differential center (1) 1
dynamical systems and ergodic theory (1) 1
elliptic integrals (1) 1
family (1) 1
hamilton system (1) 1
hamiltonian functions (1) 1
heteroclinic loops (1) 1
homoclinic loops (1) 1
homogeneous nonlinearities (1) 1
hyperelliptic hamiltonian (1) 1
isochronous centers (1) 1
lienard system (1) 1
mathematical models (1) 1
mathematics, general (1) 1
non-oscillation (1) 1
nonlinearity (1) 1
perturbation (1) 1
poincare bifurcation (1) 1
polynomial differential-systems (1) 1
polynomial vector-fields (1) 1
quartic hamiltonian (1) 1
quartic hamiltonians (1) 1
saddle (1) 1
weakened hubert 16th problem (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Applied Mathematics and Computation, ISSN 0096-3003, 02/2014, Volume 228, pp. 329 - 335
An explicit upper bound B(n) is derived for the number of zeros of Abelian integrals I(h)=∮Γhg(x,y)dx-f(x,y)dy on the open interval (0,1/4), where Γh is an... 
Quartic Hamiltonian | Weakened Hilbert 16th problem | Poincare bifurcation | Abelian integrals | MATHEMATICS, APPLIED | LINEAR ESTIMATE | COMPLEX ZEROS | LIMIT-CYCLES | HILBERT PROBLEM | CENTERS | Intervals | Algebra | Upper bounds | Computation | Integrals | Mathematical models | Polynomials
Journal Article
Journal of Applied Analysis and Computation, ISSN 2156-907X, 12/2018, Volume 8, Issue 6, pp. 1959 - 1970
In this paper, by using the method of Picard-Fuchs equation and Riccati equation, we study the upper bounds for the associated number of zeros of Abelian... 
Quadratic reversible center | Abelian integral | Weakened Hilbert’s 16th problem | weakened Hilbert's 16th problem | MATHEMATICS, APPLIED | quadratic reversible center | BIFURCATIONS | ALMOST-ALL | KIND | LIENARD SYSTEM
Journal Article
Journal of Differential Equations, ISSN 0022-0396, 11/2017, Volume 263, Issue 9, pp. 5554 - 5581
This paper deals with the limit cycles of a class of cubic Hamiltonian systems under polynomial perturbations. We suppose that the corresponding Hamiltonian... 
Hamiltonian system | Chebyshev space | Abelian integral | Picard–Fuchs equation | Weakened Hilbert's 16th problem | NUMBER | LINEAR ESTIMATE | QUADRATIC CENTERS | COMPLEX ZEROS | POLYNOMIAL DIFFERENTIAL-SYSTEMS | MATHEMATICS | Picard-Fuchs equation | ALMOST-ALL | ABELIAN-INTEGRALS | QUARTIC HAMILTONIANS | LIMIT-CYCLES | HOMOGENEOUS NONLINEARITIES
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 09/2015, Volume 429, Issue 2, pp. 924 - 941
In this study, we determine the number of zeros for Abelian integrals in four cases of quadratic reversible centers of genus one. Based on the results of Li et... 
Quadratic reversible center | Abelian integral | Weakened 16th Hilbert problem | SYSTEM | MATHEMATICS, APPLIED | GLOBAL BIFURCATION | NUMBER | LINEAR ESTIMATE | DIFFERENTIAL CENTER | ISOCHRONOUS CENTERS | MATHEMATICS | ALMOST-ALL | POLYNOMIAL VECTOR-FIELDS | LIMIT-CYCLES | ZEROS | Data mining | Analysis
Journal Article
International Journal of Bifurcation and Chaos, ISSN 0218-1274, 02/2016, Volume 26, Issue 2, p. 1650020
In this study, we determine the associated number of zeros for Abelian integrals in four classes of quadratic reversible centers of genus one. Based on the... 
Quadratic reversible center | Abelian integral | weakened 16th Hilbert problem | SYSTEM | GLOBAL BIFURCATION | CYCLICITY | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | ALMOST-ALL | MULTIDISCIPLINARY SCIENCES | LINEAR ESTIMATE | LIMIT-CYCLES | FAMILY
Journal Article
Nonlinear Analysis: Real World Applications, ISSN 1468-1218, 02/2016, Volume 27, pp. 350 - 365
In this paper, we give the upper bound of the number of zeros of Abelian integral I(h)=∮Γhg(x,y)dy−f(x,y)dx, where Γh is the closed orbit defined by... 
Hamiltonian system | Chebyshev space | Abelian integral | Weakened Hilbert’s 16th problem | Picard–Fuchs equation | Picard-Fuchs equation | Weakened Hilbert's 16th problem | MATHEMATICS, APPLIED | NUMBER | LINEAR ESTIMATE | QUADRATIC CENTERS | COMPLEX ZEROS | CYCLICITY | ALMOST-ALL | KIND | LIMIT-CYCLES | BIFURCATION | Intervals | Nonlinearity | Polynomials | Upper bounds | Integrals | Saddles
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2009, Volume 359, Issue 1, pp. 209 - 215
The finite generators of Abelian integral I ( h ) = ∮ Γ h f ( x , y ) d x − g ( x , y ) d y are obtained, where Γ h is a family of closed ovals defined by H (... 
Hamiltonian system | Abelian integral | Picard–Fuchs equation | Weakened Hilbert's 16th problem | Picard-Fuchs equation | MATHEMATICS | COMPLETE ELLIPTIC INTEGRALS | MATHEMATICS, APPLIED | NUMBER | N=2 | LINEAR ESTIMATE | COMPLEX ZEROS | HILBERT PROBLEM
Journal Article
Applied Mathematics and Computation, ISSN 0096-3003, 2008, Volume 204, Issue 1, pp. 202 - 209
In this paper, we give the upper bound of the number of zeros of Abelian integral I ( h ) = ∮ Γ h P ( x , y ) d x - Q ( x , y ) d y , where Γ h is the closed... 
Hamiltonian system | Abelian integral | Weakened Hilbert’s 16th problem | Picard–Fuchs equation | Picard-Fuchs equation | Weakened Hilbert's 16th problem | weakened Hilbert's 16th problem | COMPLETE ELLIPTIC INTEGRALS | MATHEMATICS, APPLIED | N=2 | LINEAR ESTIMATE | COMPLEX ZEROS | 16TH PROBLEM
Journal Article
International Journal of Bifurcation and Chaos, ISSN 0218-1274, 03/2013, Volume 23, Issue 3, pp. 1350047 - 1350018
Journal Article
International Journal of Bifurcation and Chaos, ISSN 0218-1274, 05/2004, Volume 14, Issue 5, pp. 1853 - 1862
In this paper, a one-parameter Hamiltonian system under cubic perturbations is investigated and the upper bound of the number of zeros of the Abelian integral... 
Bifurcation of limit cycles | Weakened Hubert 16th problem | Hamiltonian system | Abelian integrals | NUMBER | BIFURCATIONS | weakened Hilbert 16th problem | 16TH HILBERT PROBLEM | MULTIDISCIPLINARY SCIENCES | bifurcation of limit cycles | CYCLICITY | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | HOMOCLINIC LOOPS | LIMIT-CYCLES | ZEROS
Journal Article
Qualitative Theory of Dynamical Systems, ISSN 1575-5460, 12/2019, Volume 18, Issue 3, pp. 947 - 967
The present paper is devoted to study the number of zeros of Abelian integral for the near-Hamilton system $$\begin{aligned} {\left\{ \begin{array}{ll} \dot{x}... 
Chebyshev space | Abelian integral | Weakened Hilbert’s 16th problem | Picard–Fuchs equation | Difference and Functional Equations | Mathematics, general | Mathematics | Hamilton system | Dynamical Systems and Ergodic Theory
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.