X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
physics, multidisciplinary (28) 28
wigner-yanase skew information (24) 24
physics (22) 22
physics, mathematical (22) 22
quantum physics (22) 22
uncertainty relation (18) 18
mathematics (16) 16
wigner-yanase-dyson skew information (16) 16
wigner–yanase skew information (15) 15
mathematics, applied (14) 14
mathematical physics (13) 13
analysis (11) 11
entropy (11) 11
wigner-yanase-dyson information (11) 11
wigner–yanase–dyson skew information (11) 11
entanglement (10) 10
quantum fisher information (9) 9
uncertainty (9) 9
information (8) 8
applied mathematics (7) 7
convexity (7) 7
mathematical and computational physics (7) 7
quantum (7) 7
quantum theory (7) 7
skew information (7) 7
statistical physics (7) 7
theoretical, mathematical and computational physics (7) 7
inequalities (6) 6
principle (6) 6
quantum computing (6) 6
quantum information technology, spintronics (6) 6
quantum science & technology (6) 6
statistics & probability (6) 6
trace inequality (6) 6
correlation (5) 5
data structures, cryptology and information theory (5) 5
elementary particles, quantum field theory (5) 5
geometry (5) 5
information science (5) 5
monotone metrics (5) 5
physics, general (5) 5
states (5) 5
trace inequalities (5) 5
uncertainty principle (5) 5
81p15 (4) 4
94a17 (4) 4
bosonic fields (4) 4
coherent states (4) 4
density operator (4) 4
group theory and generalizations (4) 4
nonclassicality (4) 4
operators (4) 4
physical chemistry (4) 4
physics - quantum physics (4) 4
superadditivity (4) 4
15a90 (3) 3
algebra (3) 3
anisotropy (3) 3
channels (3) 3
coherence (3) 3
computer science (3) 3
fisher information (3) 3
heisenberg uncertainty relation (3) 3
indicator (3) 3
interpolation theory (3) 3
mathematical analysis (3) 3
mathematics - operator algebras (3) 3
quantum mechanics (3) 3
relative entropy (3) 3
schrödinger uncertainty relation (3) 3
settore mat/06 - probabilita' e statistica matematica (3) 3
spaces (3) 3
wigner-yanase entropy (3) 3
wigner–yanase–dyson information (3) 3
15a45 (2) 2
46l30, 46l60 (2) 2
47a63 (2) 2
62b10, 94a17 (2) 2
applications of mathematics (2) 2
astrophysics (2) 2
atoms (2) 2
coherent (2) 2
connections (2) 2
correlation analysis (2) 2
covariance (2) 2
decoherence (2) 2
equality (2) 2
evolution (2) 2
generalized covariance (2) 2
generalized wigner-yanase skew information (2) 2
generalized wigner–yanase skew information (2) 2
generation (2) 2
hilbert space (2) 2
information theory (2) 2
lieb concavity (2) 2
mathematical models (2) 2
matrices (2) 2
maximal and total wigner-yanase skew information (2) 2
metric adjusted skew information (2) 2
monotone metric (2) 2
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2010, Volume 365, Issue 1, pp. 12 - 18
We give a trace inequality related to the uncertainty relation of Wigner–Yanase–Dyson skew information... 
Wigner–Yanase–Dyson skew information | Uncertainty relation | Wigner-Yanase-Dyson skew information | MATHEMATICS | MATHEMATICS, APPLIED | TRACE INEQUALITIES
Journal Article
Entropy, ISSN 1099-4300, 02/2018, Volume 20, Issue 2, p. 132
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2011, Volume 380, Issue 2, pp. 888 - 892
We show that an uncertainty relation for Wigner–Yanase–Dyson skew information proved by Yanagi (2010) [10... 
Wigner–Yanase–Dyson skew information | Operator monotone function | Heisenberg uncertainty relation | Quantum Fisher information | Wigner-Yanase-Dyson skew information | MATHEMATICS | MATHEMATICS, APPLIED
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2009, Volume 356, Issue 1, pp. 179 - 185
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2011, Volume 383, Issue 1, pp. 208 - 214
We derive a trace inequality leading to an uncertainty relation based on the monotone pair skew information introduced by Furuichi... 
Wigner–Yanase–Dyson skew information | Wigner–Yanase skew information | Uncertainty relation | Monotone pair skew information | Wigner-Yanase skew information | Wigner-Yanase-Dyson skew information | MATHEMATICS | MATHEMATICS, APPLIED | TRACE INEQUALITIES
Journal Article
Bulletin of the Korean Mathematical Society, ISSN 1015-8634, 2017, Volume 54, Issue 1, pp. 243 - 251
We get a Schrodinger uncertainty relation for the monotone triple skew information which was introduced by Yanagi and Kajihara... 
Schrödinger uncertainty relation | Monotone triple skew information | Wigner-yanase-dyson skew information | MATHEMATICS | Schrodinger uncertainty relation | Wigner-Yanase-Dyson skew information | CONVEXITY | monotone triple skew information
Journal Article
International Journal of Theoretical Physics, ISSN 0020-7748, 3/2014, Volume 53, Issue 3, pp. 952 - 958
In this note, releasing the restriction on operators which are observables (self-adjoint), a generalization of the Wigner-Yanase-Dyson skew information is given... 
Commutator | Theoretical, Mathematical and Computational Physics | Density operator | Quantum Physics | Physics, general | Wigner-Yanase-Dyson skew information | Convexity | Physics | Elementary Particles, Quantum Field Theory | UNCERTAINTY RELATION | PHYSICS, MULTIDISCIPLINARY | PRINCIPLE | DUALITY COMPUTER | MATHEMATICAL-THEORY
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2010, Volume 369, Issue 1, pp. 164 - 167
...–Yanase–Dyson skew information and a generalized Wigner–Yanase skew information (Furuichi et al. (2009) [1]) and Yanagi found a counterexample showing that two of the three conjectures don't hold... 
Wigner–Yanase–Dyson skew information | Trace inequality | Wigner–Yanase skew information | Uncertainty relation | Wigner-Yanase skew information | Wigner-Yanase-Dyson skew information | MATHEMATICS | MATHEMATICS, APPLIED
Journal Article
Linear Algebra and Its Applications, ISSN 0024-3795, 2010, Volume 433, Issue 8, pp. 1524 - 1532
...–Yanase–Dyson skew information which is two parameter’s extension of our result in [12]. 
Wigner–Yanase–Dyson skew information | Uncertainty relation | Wigner-Yanase-Dyson skew information | MATHEMATICS, APPLIED | TRACE INEQUALITIES
Journal Article
Letters in Mathematical Physics, ISSN 0377-9017, 9/2008, Volume 85, Issue 2, pp. 135 - 146
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 03/2017, Volume 447, Issue 1, pp. 666 - 680
Journal Article
Annals of Physics, ISSN 0003-4916, 08/2015, Volume 359, pp. 136 - 140
Journal Article
International Journal of Theoretical Physics, ISSN 0020-7748, 11/2011, Volume 50, Issue 11, pp. 3375 - 3384
.... Exact expression of the final states of two-qubit are given for different model. We find that the maximal Wigner-Yanase skew information can be modulated and stored via using decay mechanism and nonlinear interaction... 
Nonlinear interaction | Storage | Theoretical, Mathematical and Computational Physics | Quantum Physics | Physics, general | Maximal Wigner-Yanase skew information | Physics | Elementary Particles, Quantum Field Theory | Two-qubit system | SPIN | PHYSICS, MULTIDISCIPLINARY | ENTANGLEMENT | STATE
Journal Article
Journal of Mathematical Analysis and Applications, ISSN 0022-247X, 2010, Volume 372, Issue 1, pp. 237 - 243
We give the trace inequalities as a generalization of the uncertainty relation improved by S. Luo. These inequalities are refinements of the trace inequality... 
Wigner–Yanase–Dyson skew information | Trace inequality | Wigner–Yanase skew information | Uncertainty relation | Wigner-Yanase skew information | Wigner-Yanase-Dyson skew information | MATHEMATICS | MATHEMATICS, APPLIED | SKEW INFORMATION
Journal Article
中国物理:英文版, ISSN 1674-1056, 2011, Volume 20, Issue 9, pp. 37 - 43
Maximal and total skew information is studied. For symmetric pure states of two-qubit, they are closely related to the linear entropy, the concurrence, and the spin squeezing parameter... 
非线性 | 信息 | 相互作用模型 | 外部磁场 | 量子比特 | 系统 | 压缩参数 | 歪斜 | maximal and total Wigner Yanase skew information | nonlinear interaction models | twoqubit system | QUANTUM FISHER INFORMATION | two-qubit system | STATISTICAL DISTANCE | maximal and total Wigner-Yanase skew information | PHYSICS, MULTIDISCIPLINARY | ENTANGLEMENT | State vectors | Nonlinearity | Entropy | Mathematical models | Compressing
Journal Article
中国物理:英文版, ISSN 1674-1056, 2012, Volume 21, Issue 1, pp. 52 - 61
Both the maximal and the total skew information have been studied. For a three-qubit system implemented in three nonlinear interaction models, we give the exact state vector at any time... 
非线性 | 状态向量 | 量子位 | 相互作用模型 | 信息利用 | 系统 | 突然死亡 | 歪斜 | three-qubit system | maximal and total Wigner-Yanase skew information | nonlinear interaction models | three decoherence channels | QUANTUM FISHER INFORMATION | STATES | PHYSICS, MULTIDISCIPLINARY | ENTANGLEMENT | State vectors | Planes | Nonlinearity | Ground state | Evolution | Mathematical models | Excitation | Channels | Extreme values
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.