Journal of Mathematical Inequalities, ISSN 1846-579X, 2011, Volume 5, Issue 4, pp. 551 - 556

The Specht ratio S(h) is the optimal constant in the reverse of the arithmetic-geometric mean inequality, i.e., if 0 < m <= a, b <= M and h = M/m, then (1 -...

Operator inequality | Specht ratio | Operator means | Kantorovich constant | Young inequality | Arithmetic-geometric-harmonic mean inequality | MATHEMATICS | MATHEMATICS, APPLIED | operator inequality | operator means | arithmetic-geometric-harmonic mean inequality

Operator inequality | Specht ratio | Operator means | Kantorovich constant | Young inequality | Arithmetic-geometric-harmonic mean inequality | MATHEMATICS | MATHEMATICS, APPLIED | operator inequality | operator means | arithmetic-geometric-harmonic mean inequality

Journal Article

Journal of inequalities and applications, ISSN 1029-242X, 2019, Volume 2019, Issue 1, pp. 1 - 12

In this paper, we present some new reverse arithmetic-geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187-194, 2013). Among...

MATHEMATICS | Arithmetic-geometric-harmonic mean | MATHEMATICS, APPLIED | Sector matrix | Positive linear maps | Inequality | Operators (mathematics) | Inequalities | Arithmetic–geometric–harmonic mean

MATHEMATICS | Arithmetic-geometric-harmonic mean | MATHEMATICS, APPLIED | Sector matrix | Positive linear maps | Inequality | Operators (mathematics) | Inequalities | Arithmetic–geometric–harmonic mean

Journal Article

3.
不等式之基本解題方法

在數學中經常要比較有興趣的各種量之大小，因此就需要藉助不等式的運算。 證明不等式的技巧多樣化，且方法不一。本篇論文主要介紹數學競賽中常見的基本不等式， 與探討證明不等式時經常使用的解題方法。 In many mathematical problems, we are expected to compare the...

arrangement | 數學歸納 | 排序 | arithmetics-geometric-harmonic | inequality | 變數代換 | 布奴利 | 不等式 | 詹生 | 算幾 | 柯西 | Cauchy

arrangement | 數學歸納 | 排序 | arithmetics-geometric-harmonic | inequality | 變數代換 | 布奴利 | 不等式 | 詹生 | 算幾 | 柯西 | Cauchy

Dissertation

Taiwanese Journal of Mathematics, ISSN 1027-5487, 12/2011, Volume 15, Issue 6, pp. 2721 - 2731

In this paper, we give the sufficient as well as necessary condition of the Schur-convexity and Schur-harmonic-convexity of the generalized Heronian means with...

Generalized heronian means | Arithmetic-geometric-harmonic means inequalities | Heronian means | Schur-convexity | Schur-geometric-convexity | Schurharmonic-convexity | MATHEMATICS | Schur-harmonic-convexity | Generalized Heronian means | VALUES

Generalized heronian means | Arithmetic-geometric-harmonic means inequalities | Heronian means | Schur-convexity | Schur-geometric-convexity | Schurharmonic-convexity | MATHEMATICS | Schur-harmonic-convexity | Generalized Heronian means | VALUES

Journal Article

Linear Algebra and Its Applications, ISSN 0024-3795, 10/2017, Volume 531, pp. 268 - 280

As extension of the Lie-Trotter product formula, we define the two-variable and multivariate Lie-Trotter means with several examples including the Sagae-Tanabe...

Arithmetic-geometric-harmonic mean inequalities | Lie-Trotter formula | Inductive mean | Geometric mean | Spectral geometric mean | MATHEMATICS | MATHEMATICS, APPLIED

Arithmetic-geometric-harmonic mean inequalities | Lie-Trotter formula | Inductive mean | Geometric mean | Spectral geometric mean | MATHEMATICS | MATHEMATICS, APPLIED

Journal Article

Journal of Inequalities in Pure and Applied Mathematics, 2009, Volume 10, Issue 4

Journal Article

Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, ISSN 1578-7303, 06/2020, Volume 114, Issue 3

In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al. (Linear Multilinear Algebra...

Arithmetic-geometric-harmonic | MATHEMATICS | Kantorovich constant | Young-type inequalities | GEOMETRIC MEAN INEQUALITY | Operators (mathematics) | Norms | Scalars | Inequalities

Arithmetic-geometric-harmonic | MATHEMATICS | Kantorovich constant | Young-type inequalities | GEOMETRIC MEAN INEQUALITY | Operators (mathematics) | Norms | Scalars | Inequalities

Journal Article

CERAMICS-SILIKATY, ISSN 0862-5468, 2019, Volume 63, Issue 4, pp. 419 - 425

Generalized mean values of size distributions are defined via the general power mean, using Kronecker's delta to allow for the geometric mean. Special cases of...

DEFINITION | Mean size (superarithmetic, arithmetic, geometric, harmonic and subharmonic) | Herdan's theorem | PARTICLE DIAMETERS | Size distributions (number-, length-, surface-, volume-weighted) | PRODUCT | Moments | PROPER TYPE | SHAPE CHARACTERIZATION | MECHANICAL-PROPERTIES | MATERIALS SCIENCE, CERAMICS | Moment ratios | moments | mean size (superarithmetic, arithmetic, geometric, harmonic and subharmonic) | size distributions (number-, length-, surface-, volume-weighted) | moment ratios | herdan's theorem

DEFINITION | Mean size (superarithmetic, arithmetic, geometric, harmonic and subharmonic) | Herdan's theorem | PARTICLE DIAMETERS | Size distributions (number-, length-, surface-, volume-weighted) | PRODUCT | Moments | PROPER TYPE | SHAPE CHARACTERIZATION | MECHANICAL-PROPERTIES | MATERIALS SCIENCE, CERAMICS | Moment ratios | moments | mean size (superarithmetic, arithmetic, geometric, harmonic and subharmonic) | size distributions (number-, length-, surface-, volume-weighted) | moment ratios | herdan's theorem

Journal Article

International Journal of Pure and Applied Mathematics, ISSN 1311-8080, 2013, Volume 89, Issue 5, pp. 719 - 730

Journal Article

有關”不等式的理論”的發展，迄今可以說是一直持續不 斷，在整個 發展過程中未必有多少傑出的佳作，但是在平淡中 卻始終不失其重要性， 許多精彩的不等式陸陸續續地被發現出 來，有些不等式經過多方面的探討 與研究之後，甚至成為極具 傳統性，而多數的不等式則仍然是孤立而沒有 關聯，因此仍有 其在的發展空間。...

harmonic mean | 幾何平均數 | monotonic function | arithmetic mean | 算術平均數 | 單調函數 | convex function | 調和平均數 | 凸函數 | geometric mean

harmonic mean | 幾何平均數 | monotonic function | arithmetic mean | 算術平均數 | 單調函數 | convex function | 調和平均數 | 凸函數 | geometric mean

Dissertation

11.
關於平均數的不等式之研究

在參考文獻[5]中,K.B.STOLARSKY.定義下列的函數 [x^α-y^α / α(x- y)]^{1/(α-1)}, if α≠0,1,u(α)=｛ L(x,y) , if α=0, I(x,y) , if α=1.而且證明函數 u(α) 對 α 而言是嚴格遞增的,但是證明的過...

harmonic mean | 幾何平均數 | Geometric mean | 算術平均數 | logarithmic mean | Arithmetic mean | 調和平均數 | 對數平均數 | identric 平均數 | identric mean

harmonic mean | 幾何平均數 | Geometric mean | 算術平均數 | logarithmic mean | Arithmetic mean | 調和平均數 | 對數平均數 | identric 平均數 | identric mean

Dissertation

12.
關於對數平均數的研究

對於不相等正實數x與y，定義它們的算數平均數A(x,y)，identric 平均數I(x,y)，對數平均 數L(x,y)，幾何平均數G(x,y)，以及調和平 均數H(x,y)如下： A=A(x,y)=(x+y)/2, I=I(x,y)=(1/e)(x^x/y^y) ^[1/(x-y)]...

harmonic mean | 幾何平均數 | arithmetic mean | 算術平均數 | logarithmic mean | 艾坦平均數 | 調和平均數 | 對數平均數 | identric mean | geometric mean

harmonic mean | 幾何平均數 | arithmetic mean | 算術平均數 | logarithmic mean | 艾坦平均數 | 調和平均數 | 對數平均數 | identric mean | geometric mean

Dissertation

No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.