X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (10) 10
general relativity and quantum cosmology (4) 4
high energy physics - theory (4) 4
killing (4) 4
mathematics - differential geometry (4) 4
mathematics, general (4) 4
physics, mathematical (4) 4
physics, particles & fields (4) 4
algebra (3) 3
differential geometry (3) 3
lie groups (3) 3
manifolds (3) 3
mathematics, applied (3) 3
supersymmetry (3) 3
black-holes (2) 2
conformal and w symmetry (2) 2
conformal killing form (2) 2
conformal killing forms (2) 2
conformal killing-yano forms (2) 2
conformal superalgebras (2) 2
currents (2) 2
extended supersymmetry (2) 2
formulation (2) 2
high energy physics (2) 2
killing–yano forms (2) 2
lie-groups (2) 2
mathematical analysis (2) 2
mathematical physics (2) 2
metrics (2) 2
operators (2) 2
physics - high energy physics - theory (2) 2
riemannian-manifolds (2) 2
superspaces (2) 2
tensors (2) 2
theorems (2) 2
theoretical, mathematical and computational physics (2) 2
theory (2) 2
twistor spinors (2) 2
2-forms (1) 1
3-form multiplet (1) 1
32l25, 53b35, 83c57 (1) 1
53c12 (1) 1
53c15 (1) 1
53c25 (1) 1
53c27 (1) 1
53c30 (1) 1
57r30 (1) 1
algebras (1) 1
analysis (1) 1
astronomi, astrofysik och kosmologi (1) 1
astronomy & astrophysics (1) 1
astronomy, astrophysics and cosmology (1) 1
auxiliary fields (1) 1
betti number (1) 1
brownian movements (1) 1
charge-monopole (1) 1
charged particles (1) 1
classical and quantum gravitation, relativity theory (1) 1
classification (1) 1
classification theorem (1) 1
closed oriented riemannian manifold (1) 1
compact manifold (1) 1
complete riemannian manifold (1) 1
complex structures (1) 1
complex structures; conformal killing-yano tensors; higher-dimensional general relativity; isotropic foliations; primary; secondary; twistor theory; mathematical physics; physics and astronomy; geometry and topology (1) 1
condensed matter (1) 1
conformal killing-yano 2-forms (1) 1
conformal killing-yano tensors (1) 1
conformal killingclosed form (1) 1
conformal killing–yano 2-forms (1) 1
conformal killing–yano forms (1) 1
conformal killing–yano tensors (1) 1
conformal scalar invariant (1) 1
conformal supergravity (1) 1
conformally flat riemannian manifold (1) 1
constant curvature manifolds (1) 1
curvature (1) 1
curvature operator (1) 1
de sitter metrics (1) 1
degeneracies (1) 1
differential equations (1) 1
dirac operator (1) 1
dirac-equation (1) 1
eigenvalue (1) 1
einstein (1) 1
einstein manifolds (1) 1
electric bridges (1) 1
equation (1) 1
equations (1) 1
field (1) 1
field theory (1) 1
forms (1) 1
fysik (1) 1
gallot-meyer theorem (1) 1
gallot–meyer theorem (1) 1
geometry (1) 1
graded lie algebra (1) 1
group theory and generalizations (1) 1
half-conformally flat metrics (1) 1
harmonic forms (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Classical and Quantum Gravity, ISSN 0264-9381, 05/2016, Volume 33, Issue 12, p. 125033
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano... 
QUANTUM SCIENCE & TECHNOLOGY | PHYSICS, MULTIDISCIPLINARY | conformal Killing-Yano forms | ASTRONOMY & ASTROPHYSICS | CURRENTS | graded Lie algebra | SPINORS | constant curvature manifolds | Einstein manifolds | PHYSICS, PARTICLES & FIELDS
Journal Article
Journal of Geometry and Physics, ISSN 0393-0440, 08/2015, Volume 94, pp. 199 - 208
We search for invariant solutions of the conformal Killing–Yano equation on Lie groups equipped with left invariant Riemannian metrics, focusing on 2-forms. We... 
Left invariant metrics | Conformal Killing–Yano 2-forms | Lie groups | Conformal Killing-Yano 2-forms | KAHLER-MANIFOLDS | MATHEMATICS, APPLIED | TWISTOR FORMS | METRICS | PHYSICS, MATHEMATICAL | RIEMANNIAN-MANIFOLDS
Journal Article
Journal of Geometry and Physics, ISSN 0393-0440, 2010, Volume 60, Issue 6, pp. 907 - 923
We show that the Euclidean Kerr–NUT-(A)dS metric in 2 m dimensions locally admits 2 m Hermitian complex structures. These are derived from the existence of a... 
Twistor theory | Isotropic foliations | Conformal Killing–Yano tensors | Complex structures | Higher-dimensional general relativity | Conformal Killing-Yano tensors | Secondary | Primary | DIRAC-EQUATION | CLASSIFICATION | PHYSICS, MATHEMATICAL | BLACK-HOLES | MATHEMATICS | EINSTEIN | 2-FORMS | KERR | DE SITTER METRICS
Journal Article
Differential Geometry and its Applications, ISSN 0926-2245, 06/2018, Volume 58, pp. 103 - 119
Riemannian manifolds carrying 2-forms satisfying the Killing–Yano equation and the conformal Killing–Yano equation are natural generalizations of nearly Kähler... 
Parallel tensors | (Conformal) Killing–Yano forms | parallel tensors | (Conformal) Killing-Yano forms | FORMS | MATHEMATICS | MATHEMATICS, APPLIED | LIE-GROUPS | MANIFOLDS
Journal Article
Differential Geometry and its Applications, ISSN 0926-2245, 10/2017, Volume 54, pp. 236 - 244
The basic first-order differential operators of spin geometry that are Dirac operator and twistor operator are considered. Special types of spinors defined... 
Twistor spinors | Killing spinors | Superalgebras | (Conformal) Killing–Yano forms | MATHEMATICS | MATHEMATICS, APPLIED | Twistor spinors (Conformal) Killing-Yano forms | Algebra
Journal Article
Journal of Geometry and Physics, ISSN 0393-0440, 06/2020, Volume 152, p. 103654
We show that the first-order symmetry operators of twistor spinors can be constructed from conformal Killing–Yano forms in conformally-flat backgrounds. We... 
Conformal superalgebras | Symmetry operators | Twistor spinors | Conformal Killing–Yano forms | MATHEMATICS | SUPERSYMMETRY | Conformal Killing-Yano forms | PHYSICS, MATHEMATICAL
Journal Article
Journal Article
Communications in Mathematical Physics, ISSN 0010-3616, 4/2014, Volume 327, Issue 2, pp. 577 - 602
Journal Article
Mathematische Zeitschrift, ISSN 0025-5874, 2/2012, Volume 270, Issue 1, pp. 337 - 350
We study transverse conformal Killing forms on foliations and prove a Gallot–Meyer theorem for foliations. Moreover, we show that on a foliation with... 
53C12 | 57R30 | Mathematics, general | 53C27 | Mathematics | Transverse Killing form | Transverse conformal Killing form | Gallot–Meyer theorem | Gallot-Meyer theorem | DIRAC OPERATOR | EIGENVALUE | MATHEMATICS | POSITIVE CURVATURE OPERATOR | VARIETIES | RIEMANNIAN FOLIATIONS | MANIFOLDS
Journal Article
Russian Mathematics, ISSN 1066-369X, 3/2017, Volume 61, Issue 3, pp. 44 - 48
We present a classification of complete locally irreducible Riemannian manifolds with nonnegative curvature operator, which admit a nonzero and nondecomposable... 
curvature operator | vanishing theorem | conformal Killing forms | classification theorem | harmonic forms | Mathematics, general | complete Riemannian manifold | Mathematics
Journal Article
Mathematical Notes, ISSN 0001-4346, 5/2014, Volume 95, Issue 5, pp. 856 - 864
The Tachibana numbers t r (M), the Killing numbers k r (M), and the planarity numbers p r (M) are considered as the dimensions of the vector spaces of,... 
Killing number | conformal Killing form | compact manifold | Tachibana number | Mathematics, general | Mathematics | planarity number | conformal Killing (co)closed form | Betti number | MATHEMATICS | OPERATORS | RIEMANNIAN-MANIFOLDS
Journal Article
Mathematical Notes, ISSN 0001-4346, 11/2006, Volume 80, Issue 5, pp. 848 - 852
Journal Article
JOURNAL OF HIGH ENERGY PHYSICS, ISSN 1029-8479, 04/2020, Volume 2020, Issue 4, pp. 1 - 43
We study classical and quantum hidden symmetries of a particle with electric charge e in the background of a Dirac monopole of magnetic charge g subjected to... 
INVARIANCE | FIELD | CHARGE-MONOPOLE | OSCILLATOR | BLACK-HOLES | Extended Supersymmetry | YANO TENSORS | DEGENERACIES | SUPERSYMMETRIC MECHANICS | Conformal and W Symmetry | QUANTUM-MECHANICS | EQUATION | PHYSICS, PARTICLES & FIELDS | Spin-orbit interactions | Supersymmetry | Mechanics (physics) | Charged particles | Monopoles | Electric bridges
Journal Article
JOURNAL OF HIGH ENERGY PHYSICS, ISSN 1029-8479, 04/2020, Volume 2020, Issue 4, pp. 1 - 51
In four spacetime dimensions, all N = 1 supergravity-matter systems can be formulated in the so-called U(1) superspace proposed by Howe in 1981. This paper is... 
SUPERFIELD | Supergravity Models | 3-FORM MULTIPLET | CURRENTS | FORMULATION | HIGHER-SPIN SUPERALGEBRAS | CONFORMAL SUPERALGEBRAS | Superspaces | TENSOR | SUPERSPACE | SIGMA-MODELS | AUXILIARY FIELDS | PHYSICS, PARTICLES & FIELDS | Killing | Supersymmetry | Tensors | Field theory | Mathematical analysis | Supergravity
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.