X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
graph theory (2) 2
mathematics (2) 2
mathematics - combinatorics (2) 2
[ info.info-dm ] computer science [cs]/discrete mathematics [cs.dm] (1) 1
algorithms (1) 1
asymptotic properties (1) 1
brooks' theorem (1) 1
brooks’ theorem (1) 1
coloring (1) 1
colouring (1) 1
combinatorial analysis (1) 1
combinatorics (1) 1
computation (1) 1
computer science (1) 1
computer science - computational complexity (1) 1
computer science, theory & methods (1) 1
connectivity (1) 1
dense graphs (1) 1
discrete mathematics (1) 1
gain (1) 1
graphs (1) 1
hamilton cycles (1) 1
highly connected tournaments (1) 1
local connectivity (1) 1
local edge-connectivity (1) 1
local edge‐connectivity (1) 1
matching (1) 1
minimally k-connected (1) 1
minimally k‐connected (1) 1
optimization (1) 1
parameterization (1) 1
qa75 electronic computers. computer science / számítástechnika, számítógéptudomány (1) 1
random edges (1) 1
random graphs (1) 1
regularity (1) 1
smoothed analysis (1) 1
statistics & probability (1) 1
substructures (1) 1
theorems (1) 1
vertex degree (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Combinatorics Probability and Computing, ISSN 0963-5483, 11/2016, Volume 25, Issue 6, pp. 909 - 927
We give several results showing that different discrete structures typically gain certain spanning substructures (in particular, Hamilton cycles) after a... 
HAMILTON CYCLES | MATHEMATICS | DENSE GRAPHS | HIGHLY CONNECTED TOURNAMENTS | RANDOM EDGES | SMOOTHED ANALYSIS | STATISTICS & PROBABILITY | COMPUTER SCIENCE, THEORY & METHODS | RANDOM GRAPHS | Substructures | Matching | Computation | Asymptotic properties | Graph theory | Regularity | Gain | Combinatorial analysis | Mathematics - Combinatorics
Journal Article
Journal of Graph Theory, ISSN 0364-9024, 08/2017, Volume 85, Issue 4, pp. 814 - 838
A graph G has maximal local edge‐connectivity k if the maximum number of edge‐disjoint paths between every pair of distinct vertices x and y is at most k. We... 
local connectivity | coloring | vertex degree | minimally k‐connected | Brooks’ theorem | local edge‐connectivity | local edge-connectivity | minimally k-connected | MATHEMATICS | Brooks' theorem | Computer Science | Discrete Mathematics
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.