X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
interconnection network (6) 6
edge fault-diameter (5) 5
cartesian graph bundle (3) 3
cartesian graph product (3) 3
edge-connectivity (3) 3
fault tolerance (3) 3
interconnection networks (3) 3
cartesian graph bundles (2) 2
cartesian graph products (2) 2
edge connectivity (2) 2
edge fault diameter (2) 2
graph theory (2) 2
graphs (2) 2
mathematics, applied (2) 2
mixed connectivity (2) 2
mixed fault diameter (2) 2
product graph (2) 2
upper bounds (2) 2
vertex connectivity (2) 2
vertex fault diameter (2) 2
applied mathematics (1) 1
bundles (1) 1
cartesian (1) 1
computer (1) 1
computer science, hardware & architecture (1) 1
deletion (1) 1
diameter (1) 1
diameter-vulnerability (1) 1
diameter‐vulnerability (1) 1
digraphs (1) 1
edge-fault-diameter (1) 1
edge-fault-tolerant diameter (1) 1
edge‐fault‐diameter (1) 1
edge‐fault‐tolerant diameter (1) 1
fault-diameter (1) 1
fault-tolerant diameter (1) 1
faults (1) 1
fault‐diameter (1) 1
fault‐tolerant diameter (1) 1
fibre (1) 1
mathematical analysis (1) 1
mathematics (1) 1
mixed fault-diameter (1) 1
networks (1) 1
operations research & management science (1) 1
pollack (1) 1
product (1) 1
product graphs (1) 1
reliable interconnection network (1) 1
vertex fault-diameter (1) 1
vertex-connectivity (1) 1
wide diameter (1) 1
wide-diameter (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Discrete Applied Mathematics, ISSN 0166-218X, 01/2015, Volume 181, pp. 90 - 97
Mixed fault diameter of a graph G, D( (G), is the maximal diameter of G after deletion of any a vertices and any b edges. Special cases are the (vertex) fault... 
Interconnection network | Fault tolerance | Vertex fault diameter | Edge fault diameter | Cartesian graph product | Mixed fault diameter | Cartesian graph bundle | MATHEMATICS, APPLIED | WIDE-DIAMETER | INTERCONNECTION NETWORKS | PRODUCT GRAPHS | Cartesian | Faults | Upper bounds | Mathematical analysis | Deletion | Graphs | Fibre | Graph theory | Bundles
Journal Article
Networks, ISSN 0028-3045, 09/2017, Volume 70, Issue 2, pp. 132 - 140
Journal Article
ARS COMBINATORIA, ISSN 0381-7032, 01/2016, Volume 124, pp. 49 - 64
Mixed connectivity is a generalization of vertex and edge connectivity. A graph is (p, 0)-connected, p > 0, if the graph remains connected after removal of any... 
MATHEMATICS | edge connectivity | vertex connectivity | fault tolerance | interconnection network | COMPUTER | EDGE FAULT-DIAMETER | Cartesian graph product | INTERCONNECTION NETWORKS | mixed connectivity | Cartesian graph bundle
Journal Article
Advances in Applied Mathematics, ISSN 0196-8858, 2009, Volume 43, Issue 3, pp. 231 - 238
Let denote the maximum diameter among all subgraphs obtained by deleting edges of . Let denote the maximum diameter among all subgraphs obtained by deleting... 
Edge-connectivity | Interconnection network | Vertex fault diameter | Vertex-connectivity | Mixed fault diameter | Edge fault diameter | MATHEMATICS, APPLIED | PRODUCT | INTERCONNECTION NETWORKS | CARTESIAN GRAPH BUNDLES
Journal Article
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743, 2007, Volume 4474, pp. 234 - 245
Conference Proceeding
International Conference on Computers - Proceedings, 2010, Volume 1, pp. 636 - 641
Conference Proceeding
7th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW 2008, 2008, pp. 144 - 147
Conference Proceeding
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.