X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
mathematics (71) 71
mathematics, applied (61) 61
mathematical analysis (38) 38
convergence (34) 34
mathematics, general (24) 24
analysis (23) 23
approximation (21) 21
operators (20) 20
mathematical models (18) 18
numerical analysis (18) 18
applications of mathematics (15) 15
mechanics (15) 15
operations research & management science (12) 12
optimization (12) 12
studies (12) 12
algebra (11) 11
continuity (11) 11
generalized kantorovich constant (11) 11
banach space (10) 10
newton's method (10) 10
theorems (10) 10
theory of computation (10) 10
computer science (9) 9
theoretical, mathematical and computational physics (9) 9
65j15 (8) 8
computational mathematics and numerical analysis (8) 8
operations research/decision theory (8) 8
49m15 (7) 7
algorithms (7) 7
calculus of variations and optimal control; optimization (7) 7
engineering (7) 7
generalized equation (7) 7
generalized equations (7) 7
generalized gradient approximation (7) 7
newton methods (7) 7
newton’s method (7) 7
41a25 (6) 6
discrete mathematics and combinatorics (6) 6
geometry (6) 6
inequalities (6) 6
mathematical modeling and industrial mathematics (6) 6
mechanical engineering (6) 6
methods (6) 6
operator theory (6) 6
physics (6) 6
statistics & probability (6) 6
47h04 (5) 5
49j53 (5) 5
chemistry, physical (5) 5
derivatives (5) 5
differential equations (5) 5
discrete operators (5) 5
dynamics (5) 5
engineering, mechanical (5) 5
entropy (5) 5
equations (5) 5
generalized inverse (5) 5
geometric mean (5) 5
local convergence (5) 5
mathematics of computing (5) 5
nonlinear equations (5) 5
numeric computing (5) 5
randbedingung (5) 5
sampling (5) 5
semilocal convergence (5) 5
specht ratio (5) 5
stability (5) 5
theorem (5) 5
47h17 (4) 4
65g99 (4) 4
65k10 (4) 4
90c30 (4) 4
94a20 (4) 4
adsorption (4) 4
algebra and number theory (4) 4
ando-hiai inequality (4) 4
boundary conditions (4) 4
computer science, software engineering (4) 4
convergence analysis (4) 4
convexity (4) 4
eigenvalues (4) 4
electronic-structure (4) 4
functions (4) 4
generalized differential quadrature method (4) 4
generalized sampling operators (4) 4
geometry and topology (4) 4
integrals (4) 4
k-functional (4) 4
mathematical methods in physics (4) 4
mathematics, interdisciplinary applications (4) 4
moments (4) 4
order of approximation (4) 4
outer inverse (4) 4
partial differential equations (4) 4
physics, condensed matter (4) 4
polynomials (4) 4
probability theory and stochastic processes (4) 4
regularity (4) 4
voronovskaja-type formula (4) 4
65h10 (3) 3
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Complex analysis and operator theory, ISSN 1661-8262, 2018, Volume 13, Issue 3, pp. 1161 - 1175
In this paper, we extend the saturation results for the sampling Kantorovich operators proved in a previous paper, to more general settings... 
Sampling Kantorovich series | Saturation order | Mathematics | Generalized sampling operators | Operator Theory | 41A25 | 41A30 | Analysis | 47A58 | Mathematics, general | Inverse results | 41A05 | Order of approximation | MATHEMATICS | MATHEMATICS, APPLIED | APPROXIMATION | SPLINE FUNCTIONS | CONVERGENCE | THERMAL BRIDGES | Computer science
Journal Article
Linear algebra and its applications, ISSN 0024-3795, 2006, Volume 412, Issue 2, pp. 526 - 537
...) via generalized Kantorovich constant K( p). As some applications of two reverse inequalities, we shall show two trace reverse inequalities involving −Tr[ T p ( A∣ B)] and D p ( A∥ B... 
Generalized Kantorovich constant | Tsallis relative operator entropy | Specht ratio | Relative operator entropy | Tsallis relative entropy | Umegaki relative entropy | MATHEMATICS, APPLIED | relative operator entropy | generalized Kantorovich constant
Journal Article
Issues of analysis, ISSN 2306-3432, 02/2020, Volume 27, Issue 1, pp. 38 - 51
A hyperbolic formulation has been established for the generalized Kantorovich constant... 
hyperbolic formulation for kantorovich constant | generalized kantorovich constant | a dual generalized kantorovich constant | hyperbolic inequalities
Journal Article
Linear & multilinear algebra, ISSN 1563-5139, 2018, Volume 67, Issue 11, pp. 2253 - 2281
Journal Article
Proceedings of the Edinburgh Mathematical Society, ISSN 0013-0915, 02/2019, Volume 62, Issue 1, pp. 265 - 280
In the present paper, an inverse result of approximation, i.e. a saturation theorem for the sampling Kantorovich operators, is derived in the case of uniform... 
saturation theorem | generalized sampling operators | central B-splines | inverse results | sampling Kantorovich series | order of approximation | THERMOGRAPHIC IMAGES | MATHEMATICS | B-SPLINES | CONVERGENCE | QUASI-INTERPOLATION | OPERATORS | Operators (mathematics) | Approximation | Representations | Sampling | Mathematical analysis | Continuity (mathematics)
Journal Article
Linear algebra and its applications, ISSN 0024-3795, 2005, Volume 403, Issue 1-3, pp. 24 - 30
...]. Then the following inequalities hold: 1 - K ( p ) p ( Tr [ A ] ) 1 - p ( Tr [ B ] ) p + D p ( A | | B ) ⩾ - Tr [ T p ( A | B ) ] ⩾ D p ( A | | B ) where K(p) is the generalized Kantorovich constant defined by K... 
Generalized Kantorovich constant | Tsallis relative operator entropy | Specht ratio | Relative operator entropy | Tsallis relative entropy | Umegaki relative entropy | MATHEMATICS, APPLIED | generalized Kantorovich constants | relative operator entropy
Journal Article
Linear algebra and its applications, ISSN 0024-3795, 2008, Volume 429, Issue 7, pp. 1546 - 1554
... s - ( 1 - α ) s ( 1 - α ) s + α r h 2 ( 1 - α ) s ( s - r ) ( 1 - α ) s + α r ‖ A ♯ α B ‖ rs ( 1 - α ) s + α r , where A ♯ α B ≔ A 1 2 ( A - 1 2 BA - 1 2 ) α A 1 2 is the α -geometric mean and a generalized Kantorovich constant K... 
Generalized Kantorovich constant | Operator inequality | Araki–Cordes inequality | Ando–Hiai inequality | Positive operator | Operator mean | Ando-Hiai inequality | Araki-Cordes inequality | MATHEMATICS | Araki-Cordes | inequality | MATHEMATICS, APPLIED | generalized kantorovich constant | operator inequality | positive operator | operator mean | Equality
Journal Article
by Seo, Y
OPERATORS AND MATRICES, ISSN 1846-3886, 2007, Volume 1, Issue 1, pp. 143 - 152
In this paper, we shall present Kantorovich type operator inequalities for Furuta inequality related to the usual order and the chaotic one in terms of a generalized Kantorovich constant... 
MATHEMATICS | Specht ratio | Furuta inequality | Grand Furuta inequality | generalized Kantorovich constant | generalized condition number | Kantorovich inequality
Journal Article
Linear algebra and its applications, ISSN 0024-3795, 2005, Volume 396, Issue 1-3, pp. 175 - 187
.... As a matter of fact, we determine real constants α 1 and α 1 such that α 2 M k [ s ] ( A ; ω ) ⩽ M k [ r ] ( A ; ω ) ⩽ α 1 M k [ s ] ( A ; ω ) if r ⩽ s, where M k [ r... 
Generalized Kantorovich constant | Mond–Pečarić method | Weighted power mean | Operator order | Mond-Pečarić method | Mond-Pecaric method | MATHEMATICS, APPLIED | weighted power mean | INEQUALITIES | operator order | generalized Kantorovich constant | FURUTA
Journal Article
Mathematical inequalities & applications, ISSN 1331-4343, 01/2017, Volume 20, Issue 1, pp. 217 - 223
In this paper, we show that if f is a doubly concave function on [0,8) and 0 < sA <= B <= tA for some scalars 0 < s <= t with w = t/s, then for every k = 1,2,... 
Generalized Kantorovich constant | Golden-Thompson inequality | Unitarily invariant norm | Geometric mean | Ando-Hiai inequality | Reverse inequality | Doubly concave function | unitarily invariant norm | MATHEMATICS | MATRICES | generalized Kantorovich constant | reverse inequality | geometric mean
Journal Article
Journal of Mathematical Inequalities, ISSN 1846-579X, 06/2018, Volume 12, Issue 2, pp. 315 - 323
..., S(t) is the so called Specht's ratio and <=(ols) is the so called Olson order. The same inequalities are also provided with other constants... 
Generalized Kantorovich constant | Golden-Thompson inequality | Specht ratio | Unitarily invariant norm | Geometric mean | Ando-Hiai inequality | Olson order | Eigenvalue inequality | unitarily invariant norm | MATHEMATICS | MATHEMATICS, APPLIED | generalized Kantorovich constant | eigenvalue inequality | OPERATORS | geometric mean
Journal Article
International Applied Mechanics, ISSN 1063-7095, 11/2008, Volume 44, Issue 11, pp. 1283 - 1293
Journal Article
Acta mathematica Sinica. English series, ISSN 1439-8516, 2011, Volume 27, Issue 7, pp. 1247 - 1258
Journal Article
Mathematical inequalities & applications, ISSN 1331-4343, 2011, Volume 14, Issue 4, pp. 905 - 910
...(A) where the Kantorovich constant for the difference C(m, M, alpha) is defined by C(m, M, alpha) = (alpha - 1) (M-a - m(a)/alpha(M-m)(alpha/alpha-1) + Mm(alpha) - mM(alpha)/M-m for any real number alpha is an element of R. 
Generalized Kantorovich constant | Positive linear map | Cauchy-Schwarz inequality | Geometric mean | Positive operator | MATHEMATICS | generalized Kantorovich constant | positive linear map | geometric mean
Journal Article
Sampling theory in signal and image processing, ISSN 1530-6429, 01/2007, Volume 6, Issue 1, pp. 29 - 52
...Abstract This paper deals with the Kantorovich version of generalized sampling series, the first one to be primarily concerned with this version. It is devoted... 
Kantorovich-type operators | Irregular sampling | Modular convergence | Generalized sampling operators | L log L-space | Orlicz spaces | Invariant subspaces | Research | Functions, Modular | Statistical sampling
Journal Article
International Journal of Applied and Computational Mathematics, ISSN 2349-5103, 12/2017, Volume 3, Issue 4, pp. 3295 - 3304
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.