Molecular Ecology Resources, ISSN 1755-098X, 07/2010, Volume 10, Issue 4, pp. 720 - 722
Individual multilocus heterozygosity estimates based on a limited number of loci are expected to correlate only weakly with the inbreeding level of an...
heterozygosity–heterozygosity correlation | inbreeding | multilocus heterozygosity | internal relatedness | standardized heterozygosity | homozygosity | Internal relatedness | Inbreeding | Multilocus heterozygosity | Standardized heterozygosity | Homozygosity | Heterozygosity-heterozygosity correlation | POPULATION | EVOLUTIONARY BIOLOGY | BIOCHEMISTRY & MOLECULAR BIOLOGY | heterozygosity-heterozygosity correlation | ECOLOGY
heterozygosity–heterozygosity correlation | inbreeding | multilocus heterozygosity | internal relatedness | standardized heterozygosity | homozygosity | Internal relatedness | Inbreeding | Multilocus heterozygosity | Standardized heterozygosity | Homozygosity | Heterozygosity-heterozygosity correlation | POPULATION | EVOLUTIONARY BIOLOGY | BIOCHEMISTRY & MOLECULAR BIOLOGY | heterozygosity-heterozygosity correlation | ECOLOGY
Journal Article
Journal of Evolutionary Biology, ISSN 1010-061X, 11/2017, Volume 30, Issue 11, pp. 1953 - 1965
How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern....
microsatellites | conserved microsatellites | negative heterozygosity–fitness correlations | Eretmochelys imbricata | hawksbill turtle | outbreeding depression | inbreeding depression | heterozygosity–fitness correlations | GENETIC SIMILARITY | POPULATION | SIBSHIP INFERENCE | PATERNAL GENOTYPES | CHELONIA-MYDAS | SEA-TURTLE | negative heterozygosity-fitness correlations | MICROSATELLITE LOCI | heterozygosity-fitness correlations | EVOLUTIONARY BIOLOGY | GENETICS & HEREDITY | ECOLOGY | SELECTION | Genetics, Population | Aquatic Organisms - genetics | Genotype | Male | Microsatellite Repeats - genetics | Genetic Variation | Turtles - genetics | Animals | Genetic Fitness | Computer Simulation | Female | Heterozygote | Inbreeding | Models, Genetic | Endangered Species | Evolution | Endangered species | Analysis | Sea turtles | Microsatellites | Genetic variability | Biological evolution | Variability | Philopatry | Genetic diversity | Clutch size | Outbreeding | Heterozygosity | Endangered & extinct species | Genetic markers | Offspring | Evolutionary biology | Dispersal | Turtles | Genotypes
microsatellites | conserved microsatellites | negative heterozygosity–fitness correlations | Eretmochelys imbricata | hawksbill turtle | outbreeding depression | inbreeding depression | heterozygosity–fitness correlations | GENETIC SIMILARITY | POPULATION | SIBSHIP INFERENCE | PATERNAL GENOTYPES | CHELONIA-MYDAS | SEA-TURTLE | negative heterozygosity-fitness correlations | MICROSATELLITE LOCI | heterozygosity-fitness correlations | EVOLUTIONARY BIOLOGY | GENETICS & HEREDITY | ECOLOGY | SELECTION | Genetics, Population | Aquatic Organisms - genetics | Genotype | Male | Microsatellite Repeats - genetics | Genetic Variation | Turtles - genetics | Animals | Genetic Fitness | Computer Simulation | Female | Heterozygote | Inbreeding | Models, Genetic | Endangered Species | Evolution | Endangered species | Analysis | Sea turtles | Microsatellites | Genetic variability | Biological evolution | Variability | Philopatry | Genetic diversity | Clutch size | Outbreeding | Heterozygosity | Endangered & extinct species | Genetic markers | Offspring | Evolutionary biology | Dispersal | Turtles | Genotypes
Journal Article
Molecular Ecology, ISSN 0962-1083, 10/2011, Volume 20, Issue 19, pp. 4028 - 4041
The relationship between genetic diversity and fitness has important implications in evolutionary and conservation biology. This relationship has been widely...
microsatellites | full‐sibling design | inbreeding | negative heterozygosity–fitness correlation | expressed sequence tag | heterozygosity–fitness correlation | full-sibling design | negative heterozygosity-fitness correlation | heterozygosity-fitness correlation | POPULATION | BIOCHEMISTRY & MOLECULAR BIOLOGY | FITNESS CORRELATIONS | RED DEER | GREAT REED WARBLERS | GENOME | EVOLUTIONARY BIOLOGY | INDIVIDUAL HETEROZYGOSITY | OUTBREEDING DEPRESSION | INBREEDING DEPRESSION | MICROSATELLITE MARKERS | ECOLOGY | MULTILOCUS HETEROZYGOSITY | Passeriformes - physiology | Finches - genetics | Genotype | Male | Chromosome Mapping | Genetic Markers | Longevity | Animals | Passeriformes - genetics | Female | Heterozygote | Inbreeding | Microsatellite Repeats | Zebra finch | Analysis | Animal reproduction | Birds | Genetic markers | Genetic diversity | Evolutionary biology | Population genetics
microsatellites | full‐sibling design | inbreeding | negative heterozygosity–fitness correlation | expressed sequence tag | heterozygosity–fitness correlation | full-sibling design | negative heterozygosity-fitness correlation | heterozygosity-fitness correlation | POPULATION | BIOCHEMISTRY & MOLECULAR BIOLOGY | FITNESS CORRELATIONS | RED DEER | GREAT REED WARBLERS | GENOME | EVOLUTIONARY BIOLOGY | INDIVIDUAL HETEROZYGOSITY | OUTBREEDING DEPRESSION | INBREEDING DEPRESSION | MICROSATELLITE MARKERS | ECOLOGY | MULTILOCUS HETEROZYGOSITY | Passeriformes - physiology | Finches - genetics | Genotype | Male | Chromosome Mapping | Genetic Markers | Longevity | Animals | Passeriformes - genetics | Female | Heterozygote | Inbreeding | Microsatellite Repeats | Zebra finch | Analysis | Animal reproduction | Birds | Genetic markers | Genetic diversity | Evolutionary biology | Population genetics
Journal Article
Evolutionary Applications, ISSN 1752-4571, 09/2014, Volume 7, Issue 8, pp. 937 - 948
The relationship between genetic variation and phenotypic traits is fundamental to the study and management of natural populations. Such relationships often...
heterozygosity fitness correlation | mule deer | multilocus heterozygosity | single‐locus heterozygosity | migration | genetic differentiation | Odocoileus hemionus | wildlife | Heterozygosity fitness | Correlation | Wildlife | Migration | Mule deer | Genetic differentiation | Multilocus heterozygosity | Singlelocus heterozygosity | HETEROZYGOSITY-FITNESS CORRELATIONS | ALLOZYME-ASSOCIATED HETEROSIS | ODOCOILEUS-HEMIONUS | MITOCHONDRIAL-DNA | PREDICTIVE MODELS | single-locus heterozygosity | WHITE-TAILED DEER | EVOLUTIONARY BIOLOGY | INBREEDING DEPRESSION | MICROSATELLITE MARKERS | NUTRITIONAL CONDITION | Haplotypes | Genotype & phenotype | Phenotypes | Fat metabolism | Wildlife conservation | Body fat | Climatic conditions | Phenotypic variations | Ecology | Genomes | Genetic diversity | Deer | Heterozygosity | Mitochondria | Animal behavior | Population | Females | Adaptation | Original | Biological Sciences | Naturvetenskap | Biologiska vetenskaper | Evolutionsbiologi | Natural Sciences | Evolutionary Biology
heterozygosity fitness correlation | mule deer | multilocus heterozygosity | single‐locus heterozygosity | migration | genetic differentiation | Odocoileus hemionus | wildlife | Heterozygosity fitness | Correlation | Wildlife | Migration | Mule deer | Genetic differentiation | Multilocus heterozygosity | Singlelocus heterozygosity | HETEROZYGOSITY-FITNESS CORRELATIONS | ALLOZYME-ASSOCIATED HETEROSIS | ODOCOILEUS-HEMIONUS | MITOCHONDRIAL-DNA | PREDICTIVE MODELS | single-locus heterozygosity | WHITE-TAILED DEER | EVOLUTIONARY BIOLOGY | INBREEDING DEPRESSION | MICROSATELLITE MARKERS | NUTRITIONAL CONDITION | Haplotypes | Genotype & phenotype | Phenotypes | Fat metabolism | Wildlife conservation | Body fat | Climatic conditions | Phenotypic variations | Ecology | Genomes | Genetic diversity | Deer | Heterozygosity | Mitochondria | Animal behavior | Population | Females | Adaptation | Original | Biological Sciences | Naturvetenskap | Biologiska vetenskaper | Evolutionsbiologi | Natural Sciences | Evolutionary Biology
Journal Article
Genome Biology, ISSN 1474-7596, 11/2009, Volume 10, Issue 11, pp. R128 - R128
We describe a method for automatic detection of absolute segmental copy numbers and genotype status in complex cancer genome profiles measured with...
BREAST-CANCER | COPY-NUMBERS | BASAL-LIKE CARCINOMAS | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | GENETICS & HEREDITY | TUMOR SAMPLES | BRCA1 | HIDDEN MARKOV MODEL | ABERRATIONS | NUCLEOTIDE POLYMORPHISM ARRAY | HETEROZYGOSITY | CGH DATA | Automation | Genomics | Humans | Gene Expression Regulation, Neoplastic | Genotype | Gene Expression Profiling | Loss of Heterozygosity | Allelic Imbalance | Homozygote | Breast Neoplasms - genetics | Karyotyping | Ploidies | Models, Genetic | Polymorphism, Single Nucleotide | Genome | Biochemistry, Molecular Biology | Breast Neoplasms | Life Sciences | Genetics | Method
BREAST-CANCER | COPY-NUMBERS | BASAL-LIKE CARCINOMAS | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | GENETICS & HEREDITY | TUMOR SAMPLES | BRCA1 | HIDDEN MARKOV MODEL | ABERRATIONS | NUCLEOTIDE POLYMORPHISM ARRAY | HETEROZYGOSITY | CGH DATA | Automation | Genomics | Humans | Gene Expression Regulation, Neoplastic | Genotype | Gene Expression Profiling | Loss of Heterozygosity | Allelic Imbalance | Homozygote | Breast Neoplasms - genetics | Karyotyping | Ploidies | Models, Genetic | Polymorphism, Single Nucleotide | Genome | Biochemistry, Molecular Biology | Breast Neoplasms | Life Sciences | Genetics | Method
Journal Article
Methods in Ecology and Evolution, ISSN 2041-210X, 11/2016, Volume 7, Issue 11, pp. 1331 - 1339
Summary Heterozygosity–fitness correlations (HFCs) have been widely used to explore the impact of inbreeding on individual fitness. Initially, most studies...
heterozygosity | inbreeding | heterozygosity‐fitness correlation (HFC) | genetic marker | identity disequilibrium | heterozygosity-fitness correlation (HFC) | HETEROZYGOSITY-FITNESS CORRELATIONS | POPULATION | DEPRESSION | WILD | OLD | LOCI | GENOME | HETEROSIS | PEDIGREES | ECOLOGY | Biological Sciences | Data- och informationsvetenskap | Bioinformatik (beräkningsbiologi) | Computer and Information Sciences | Genetik | Naturvetenskap | Biologiska vetenskaper | Genetics | Natural Sciences | Bioinformatics (Computational Biology)
heterozygosity | inbreeding | heterozygosity‐fitness correlation (HFC) | genetic marker | identity disequilibrium | heterozygosity-fitness correlation (HFC) | HETEROZYGOSITY-FITNESS CORRELATIONS | POPULATION | DEPRESSION | WILD | OLD | LOCI | GENOME | HETEROSIS | PEDIGREES | ECOLOGY | Biological Sciences | Data- och informationsvetenskap | Bioinformatik (beräkningsbiologi) | Computer and Information Sciences | Genetik | Naturvetenskap | Biologiska vetenskaper | Genetics | Natural Sciences | Bioinformatics (Computational Biology)
Journal Article
PLoS ONE, ISSN 1932-6203, 06/2013, Volume 8, Issue 6
The labels and legends for the two figures are in correct order. Citation: Amos W (2013) Correction: Variation in Heterozygosity Predicts Variation in Human...
Heterozygosity
Heterozygosity
Journal Article
Evolution, ISSN 0014-3820, 5/2010, Volume 64, Issue 5, pp. 1202 - 1217
Owing to the remarkable progress of molecular techniques, heterozygosity-fitness correlations (HFCs) have become a popular tool to study the impact of...
Statistical variance | Inbreeding depression | PERSPECTIVE | Genetic loci | Inbreeding | Evolution | Evolutionary genetics | Genomes | Population genetics | Heterosis | Phenotypic traits | population genetics | quantitative genetics | inbreeding | Fitness | Quantitative genetics | GENETIC-BASIS | ALLOZYME-ASSOCIATED HETEROSIS | GROWTH-RATE | MICROSATELLITE ANALYSES | GENIC HETEROZYGOSITY | EVOLUTIONARY BIOLOGY | LINKAGE DISEQUILIBRIUM | INBREEDING DEPRESSION | GENETICS & HEREDITY | ECOLOGY | MULTILOCUS HETEROZYGOSITY | ASSOCIATIVE OVERDOMINANCE | DELETERIOUS MUTATIONS | Genetics, Population | Heterozygote | Animals | Heterozygosis | Analysis | Research | Heterozygosity
Statistical variance | Inbreeding depression | PERSPECTIVE | Genetic loci | Inbreeding | Evolution | Evolutionary genetics | Genomes | Population genetics | Heterosis | Phenotypic traits | population genetics | quantitative genetics | inbreeding | Fitness | Quantitative genetics | GENETIC-BASIS | ALLOZYME-ASSOCIATED HETEROSIS | GROWTH-RATE | MICROSATELLITE ANALYSES | GENIC HETEROZYGOSITY | EVOLUTIONARY BIOLOGY | LINKAGE DISEQUILIBRIUM | INBREEDING DEPRESSION | GENETICS & HEREDITY | ECOLOGY | MULTILOCUS HETEROZYGOSITY | ASSOCIATIVE OVERDOMINANCE | DELETERIOUS MUTATIONS | Genetics, Population | Heterozygote | Animals | Heterozygosis | Analysis | Research | Heterozygosity
Journal Article
Nature, ISSN 0028-0836, 05/2017, Volume 545, Issue 7653, pp. 229 - 233
Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has...
DERIVATION | GENETIC-VARIATION | DATABASE | BCL-XL | CLONAL HEMATOPOIESIS | MULTIDISCIPLINARY SCIENCES | COPY NUMBER | DEFINED CONDITIONS | GENERATION | 20Q11.21 | CULTURES | Genetic aspects | Gene mutations | Health aspects | Stem cells | Cell culture | Biotechnology | Medical research | Nucleotide sequence | Copy number | p53 Protein | Good Manufacturing Practice | Amino acid sequence | Genomes | Ribonucleic acid--RNA | Gene sequencing | Heterozygosity | Cell lines | Computer applications | Loss of heterozygosity | Mutation | Pluripotency | Deoxyribonucleic acid--DNA | Cancer | Tumors
DERIVATION | GENETIC-VARIATION | DATABASE | BCL-XL | CLONAL HEMATOPOIESIS | MULTIDISCIPLINARY SCIENCES | COPY NUMBER | DEFINED CONDITIONS | GENERATION | 20Q11.21 | CULTURES | Genetic aspects | Gene mutations | Health aspects | Stem cells | Cell culture | Biotechnology | Medical research | Nucleotide sequence | Copy number | p53 Protein | Good Manufacturing Practice | Amino acid sequence | Genomes | Ribonucleic acid--RNA | Gene sequencing | Heterozygosity | Cell lines | Computer applications | Loss of heterozygosity | Mutation | Pluripotency | Deoxyribonucleic acid--DNA | Cancer | Tumors
Journal Article
Science China. Life sciences, ISSN 1674-7305, 06/2019, Volume 62, Issue 6, pp. 868 - 869
Journal Article
HAEMATOLOGICA, ISSN 0390-6078, 03/2019, Volume 104, Issue 3, pp. 425 - 427
Journal Article
Molecular Ecology Resources, ISSN 1755-098X, 05/2019, Volume 19, Issue 3, pp. 659 - 671
Molecular markers are a useful tool allowing conservation and population managers to shed light on genetic processes affecting threatened populations. However,...
microsatellites | reduced representation sequencing | genome‐wide heterozygosity | genetic management | inbreeding | candidate region resequencing | genome-wide heterozygosity | HETEROZYGOSITY-FITNESS CORRELATIONS | POPULATION | BIOCHEMISTRY & MOLECULAR BIOLOGY | MARKERS | DRIFT | EVOLUTIONARY BIOLOGY | INBREEDING DEPRESSION | NATURAL-SELECTION | TASMANIAN DEVILS | ECOLOGY | DIVERSITY | DIFFERENTIATION | Genetic research | Genetic markers | Genomics | Microsatellites | Decision making | Biological evolution | Markers | Conservation | Population studies | Genomes | Genetic diversity | Population statistics | Population genetics | Gene sequencing | Heterozygosity | Conserved sequence | Major histocompatibility complex | Wildlife | Population | Genetics | Representations | Wildlife management | Histocompatibility
microsatellites | reduced representation sequencing | genome‐wide heterozygosity | genetic management | inbreeding | candidate region resequencing | genome-wide heterozygosity | HETEROZYGOSITY-FITNESS CORRELATIONS | POPULATION | BIOCHEMISTRY & MOLECULAR BIOLOGY | MARKERS | DRIFT | EVOLUTIONARY BIOLOGY | INBREEDING DEPRESSION | NATURAL-SELECTION | TASMANIAN DEVILS | ECOLOGY | DIVERSITY | DIFFERENTIATION | Genetic research | Genetic markers | Genomics | Microsatellites | Decision making | Biological evolution | Markers | Conservation | Population studies | Genomes | Genetic diversity | Population statistics | Population genetics | Gene sequencing | Heterozygosity | Conserved sequence | Major histocompatibility complex | Wildlife | Population | Genetics | Representations | Wildlife management | Histocompatibility
Journal Article