X
Search Filters
Format Format
Subjects Subjects
Subjects Subjects
X
Sort by Item Count (A-Z)
Filter by Count
identric mean (39) 39
logarithmic mean (24) 24
mathematics (22) 22
mathematics, applied (14) 14
arithmetic mean (12) 12
geometric mean (12) 12
inequalities (12) 12
harmonic mean (8) 8
power mean (7) 7
inequality (6) 6
values (6) 6
analysis (5) 5
mathematical analysis (5) 5
applications of mathematics (4) 4
exponential mean (4) 4
mathematics, general (4) 4
power (4) 4
2 variables (3) 3
applied mathematics (3) 3
best constants (3) 3
centroidal mean (3) 3
gamma function (3) 3
generalized logarithmic mean (3) 3
monotonicity (3) 3
power means (3) 3
psi function (3) 3
stolarsky mean (3) 3
26d07 (2) 2
26e60 (2) 2
completely monotonic function (2) 2
extended logarithmic mean (2) 2
extended mean values (2) 2
gamma-function (2) 2
generalization (2) 2
inequalities ◆ means of two arguments ◆ identric mean ◆ logarithmic mean (2) 2
lehmer mean (2) 2
log-convexity (2) 2
logarithmically completely monotonic function (2) 2
mathematical functions (2) 2
mathematical inequalities (2) 2
mathematical models (2) 2
mathematical theorems (2) 2
means of two arguments (2) 2
modified bessel function (2) 2
monotonic functions (2) 2
operator mean (2) 2
operator monotone function (2) 2
polygamma function (2) 2
sharp inequalities (2) 2
toader-qi mean (2) 2
26b25 (1) 1
26d20 (1) 1
33c10 (1) 1
agglomeration (1) 1
aggregation functions (1) 1
algebraic structure (1) 1
algorithms (1) 1
alzer mean (1) 1
angular inequality (1) 1
application (1) 1
applications (1) 1
approximation (1) 1
arithmetic (1) 1
arithmetic mean of function (1) 1
arithmetic means (1) 1
averages (1) 1
beckenbach–gini means (1) 1
bessel functions (1) 1
bounds (1) 1
combinatorics (1) 1
comparable means (1) 1
comparison of means (1) 1
complementariness w.r.t. a mean (1) 1
complementary means (1) 1
complementary pre-means (1) 1
complete elliptic integrals (1) 1
complete monotonicity (1) 1
composition of means (1) 1
computation (1) 1
computational mathematics (1) 1
computer science, information systems (1) 1
construction (1) 1
contrageometric mean (1) 1
contraharmonic mean (1) 1
convex combinations bounds (1) 1
convexity (1) 1
convexity and concavity property (1) 1
design engineering (1) 1
discrete mathematics and combinatorics (1) 1
divided difference (1) 1
elliptic integrals (1) 1
equality (1) 1
exponential-geometric mean (1) 1
extended mean (1) 1
extension (1) 1
first seiffert mean (1) 1
fuzzy logic (1) 1
gamma (1) 1
generalized centroidal mean (1) 1
generalized heron mean (1) 1
more...
Language Language
Publication Date Publication Date
Click on a bar to filter by decade
Slide to change publication date range


Journal of Inequalities and Applications, ISSN 1025-5834, 12/2013, Volume 2013, Issue 1, pp. 1 - 17
For with , let , , , , denote the logarithmic mean, identric mean, arithmetic mean, geometric mean and r-order power mean, respectively... 
inequality | Analysis | Mathematics, general | logarithmic mean | Mathematics | Applications of Mathematics | power mean | identric mean | Logarithmic mean | Identric mean | Inequality | Power mean | MATHEMATICS | MATHEMATICS, APPLIED | INEQUALITIES | POWER | Lower bounds | Mathematical analysis | Inequalities | Arithmetic
Journal Article
Journal of inequalities and applications, ISSN 1029-242X, 2018, Volume 2018, Issue 1, pp. 1 - 8
For t∈[0,1/2] $t\in [0,1/2]$ and s≥1 $s\ge 1$, we consider the two-parameter family of means Qt,s(a,b)=Gs(ta+(1−t)b,(1−t)a+tb)A1−s(a,b), $$ Q_{t,s}(a,b)=G^{s}\bigl(ta+(1-t)b,(1-t)a+tb\bigr)A^{1-s}(a,b... 
26E60 | Harmonic Mean | Identric Mean | Analysis | Geometric Mean | Mathematics, general | Mathematics | Arithmetic Mean | Applications of Mathematics | 26D07 | MATHEMATICS | MATHEMATICS, APPLIED | INEQUALITIES | Parameters | Research
Journal Article
Problemy Analiza, ISSN 2306-3424, 2018, Volume 7, Issue 1, pp. 116 - 133
In this paper we establish two sided inequalities for the following two new means X=X(a,b)=Ae^(G/P-1), Y=Y(a,b)=Ge^(L/A-1... 
Means of two arguments | Logarithmic mean | Inequalities | Identric mean | inequalities ◆ means of two arguments ◆ identric mean ◆ logarithmic mean
Journal Article
Journal of Inequalities and Applications, ISSN 1025-5834, 12/2016, Volume 2016, Issue 1, pp. 1 - 21
...}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}a^{\cos^{2}\theta }b^{\sin^{2}\theta}\,d\theta$ for all t... 
26E60 | modified Bessel function | 33C10 | Toader-Qi mean | Analysis | Mathematics, general | logarithmic mean | Mathematics | Applications of Mathematics | identric mean | MATHEMATICS | SHARP INEQUALITIES | MATHEMATICS, APPLIED | ARITHMETIC MEANS | BOUNDS | TERMS | POWER | VALUES | Texts | Approximation | Bessel functions | Inequalities
Journal Article
Bulletin of the Iranian Mathematical Society, ISSN 1018-6301, 05/2013, Volume 39, Issue 2, pp. 259 - 269
Journal Article
Journal of Inequalities and Applications, ISSN 1025-5834, 12/2012, Volume 2012, Issue 1, pp. 1 - 9
... . Then we generalize some well-known inequalities for the arithmetic, geometric, logarithmic, and identric means to obtain analogous inequalities for their pth powers, where . MSC... 
Analysis | hyperbolic cotangent | arithmetic mean | hyperbolic sine | Mathematics, general | logarithmic mean | Mathematics | best constants | Applications of Mathematics | hyperbolic cosine | geometric mean | identric mean | Logarithmic mean | Best constants | Hyperbolic cotangent | Geometric mean | Hyperbolic cosine | Hyperbolic sine | Arithmetic mean | Identric mean | MATHEMATICS | MATHEMATICS, APPLIED | VALUES | 2 VARIABLES
Journal Article
Information sciences, ISSN 0020-0255, 2016, Volume 331, pp. 137 - 147
.... We propose a generic method for extending bivariate symmetric means to n-variate weighted means by recursively applying the specified bivariate mean in a binary tree construction... 
Aggregation functions | Heronian mean | Logarithmic mean | Averages | Identric mean | COMPUTER SCIENCE, INFORMATION SYSTEMS | Algorithms | Trees | Fuzzy logic | Design engineering | Construction | Intelligence | Mathematical analysis | Mathematical models | Agglomeration
Journal Article
Tamkang Journal of Mathematics, ISSN 0049-2930, 12/2009, Volume 40, Issue 4, pp. 429 - 436
Journal Article
Journal of Inequalities in Pure and Applied Mathematics, 2008, Volume 9, Issue 3
Journal Article
Mathematical Inequalities and Applications, ISSN 1331-4343, 04/2016, Volume 19, Issue 2, pp. 721 - 730
...) d theta are respectively the logarithmic, identric and Toader-Qi means of a and b. 
Logarithmic mean | Modified Bessel function | Toader-Qi mean | Identric mean | MATHEMATICS | modified Bessel function | INEQUALITIES | logarithmic mean | POWER | VALUES | identric mean | LOG-CONVEXITY
Journal Article
Journal of Mathematical Inequalities, ISSN 1846-579X, 2011, Volume 5, Issue 3, pp. 301 - 306
For r is an element of R, the Lehmer mean of two positive numbers a and b is defined by L-r(a,b) = a(r+1) + b(r+1)/a(r) + b(r... 
Lehmer mean | Logarithmic mean | Identric mean | MATHEMATICS | MATHEMATICS, APPLIED | HOLDER | logarithmic mean | VALUES | identric mean
Journal Article
Linear Algebra and Its Applications, ISSN 0024-3795, 11/2015, Volume 485, pp. 124 - 131
A new family of operator means is introduced. It interpolates the arithmetic, geometric, harmonic and logarithmic means... 
Power difference mean | Operator monotone function | Stolarsky mean | Positive definite operator | Operator mean | Identric mean | MSC primary 47A64 | secondary 47A63 | MATHEMATICS | MATHEMATICS, APPLIED | MONOTONE-FUNCTIONS | Information science
Journal Article
Journal of Mathematical Inequalities, ISSN 1846-579X, 12/2012, Volume 6, Issue 4, pp. 533 - 543
Let x,y > 0 with x not equal y. We give new sharp bounds for identric mean I = e(-1) (x(x)/y(y))(1/(x-y)) in terms of logarithmic mean L... 
MATHEMATICS | inequality | MATHEMATICS, APPLIED | Logarithmic mean | INEQUALITIES | arithmetic mean | identric mean | LOG-CONVEXITY | 2 VARIABLES
Journal Article
Journal of Mathematical Inequalities, ISSN 1846-579X, 2015, Volume 9, Issue 2, pp. 331 - 343
Let p is an element of R, M be a bivariate mean, and M-p be defined by M-p(a, b) = M-1/p(a(p), b(p)) (p not equal 0) and M-0(a, b) = lim(p -> 0)M(p)(a, b). In this paper, we prove that the sharp inequalities L-2... 
Exponential-geometric mean | Logarithmic mean | Power-exponential mean | First Seiffert mean | Neuman-Sándor mean | Identric mean | MATHEMATICS | first Seiffert mean | MATHEMATICS, APPLIED | Neuman-Sandor mean | power-exponential mean | exponential-geometric mean | identric mean | POWER MEANS
Journal Article
Applied Mathematics Letters, ISSN 0893-9659, 2012, Volume 25, Issue 3, pp. 471 - 475
... ) a ) holds for all a , b > 0 with a ≠ b . Here, G ( a , b ) , and I ( a , b ) denote the geometric, and identric means of two positive numbers a and b , respectively. 
Geometric mean | Identric mean | Inequality | SHARP INEQUALITIES | MATHEMATICS, APPLIED | 2 VARIABLES | Mathematical analysis | Optimization | Inequalities
Journal Article
Issues of analysis, ISSN 2306-3424, 03/2018, Volume 7(25), Issue 1
In this paper we establish two sided inequalities for the following two new means X=X(a,b)=Ae^(G/P−1), Y=Y(a,b)=Ge^(L/A−1... 
logarithmic mean | means of two arguments | identric mean | Inequalities
Journal Article
Journal of Mathematical Inequalities, ISSN 1846-579X, 2014, Volume 8, Issue 4, pp. 939 - 945
In this paper, optimal convex combination bounds of centroidal and harmonic means for weighted geometric mean of logarithmic and identric means are proved... 
Logarithmic mean | Convex combinations bounds | Weighted geometric mean | Centroidal mean | Harmonic mean | Identric mean | centroidal mean | harmonic mean | MATHEMATICS | MATHEMATICS, APPLIED | weighted geometric mean | logarithmic mean | identric mean
Journal Article
Operators and Matrices, ISSN 1846-3886, 06/2017, Volume 11, Issue 2, pp. 519 - 532
We consider operator monotonicity of a 2-parameter family of functions including the representing function of the Stolarsky mean, which is constructed by integration of the function [(1-alpha) + alpha x(p)](1/p... 
Operator monotone function | Stolarsky mean | Identric mean | Operator mean | MATHEMATICS | operator monotone function | identric mean
Journal Article
No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.