International review of cytology. Supplement, Volume 13, xv, 336
Book
1970, IBP handbook no. 15, Volume no. 15, 164
Book
International Journal of Systematic and Evolutionary Microbiology, ISSN 1466-5026, 07/2017, Volume 67, Issue 7, pp. 2485 - 2494
Journal Article
Trends in Plant Science, ISSN 1360-1385, 03/2015, Volume 20, Issue 3, pp. 186 - 194
New research results have significantly revised our understanding of the rhizobium–legume infection process. For example, Nod factors (NFs), previously thought...
rhizobium–legume symbiosis | MTI | immunity | ETI | intracellular defenses | nod factors | Intracellular defenses | Nod factors | Rhizobium-legume symbiosis | Immunity | SINORHIZOBIUM-MELILOTI | PLANT SCIENCES | SP STRAIN NGR234 | LOTUS-JAPONICUS | NADPH OXIDASE GENE | MEDICAGO-TRUNCATULA | BRADYRHIZOBIUM-JAPONICUM | FUNCTIONAL-ANALYSIS | NODULE EARLY SENESCENCE | DEFENSE-LIKE REACTIONS | rhizobium-legume symbiosis | III SECRETION SYSTEM | Symbiosis | Plant Immunity | Fabaceae - immunology | Rhizobium - physiology | Fabaceae - microbiology | Legumes | Mimosaceae | Beans
rhizobium–legume symbiosis | MTI | immunity | ETI | intracellular defenses | nod factors | Intracellular defenses | Nod factors | Rhizobium-legume symbiosis | Immunity | SINORHIZOBIUM-MELILOTI | PLANT SCIENCES | SP STRAIN NGR234 | LOTUS-JAPONICUS | NADPH OXIDASE GENE | MEDICAGO-TRUNCATULA | BRADYRHIZOBIUM-JAPONICUM | FUNCTIONAL-ANALYSIS | NODULE EARLY SENESCENCE | DEFENSE-LIKE REACTIONS | rhizobium-legume symbiosis | III SECRETION SYSTEM | Symbiosis | Plant Immunity | Fabaceae - immunology | Rhizobium - physiology | Fabaceae - microbiology | Legumes | Mimosaceae | Beans
Journal Article
Journal of Applied Microbiology, ISSN 1364-5072, 07/2016, Volume 121, Issue 1, pp. 177 - 186
Aims To isolate a novel strain that could degrade many kinds PAEs efficiently and investigate the DBP‐degrading pathway in this strain. Methods and Results...
biodegradation | pathway | GC–MS | phthalates | Rhizobium sp. LMB‐1 | Biodegradation | GC-MS | Pathway | Rhizobium sp. LMB-1 | Phthalates | BACTERIA | ACID | PLASTIC FILM | MICROBIOLOGY | RIVER | MICROBIAL-DEGRADATION | GENE | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | Rhizobium sp | LMB-1 | SOIL | STRAIN | EXPRESSION | Biodegradation, Environmental | Gas Chromatography-Mass Spectrometry | Esters - metabolism | Rhizobium - isolation & purification | Dibutyl Phthalate - metabolism | Rhizobium - genetics | Esters - analysis | Rhizobium - metabolism | Rhizobium - classification | Dibutyl Phthalate - analysis | Phthalic Acids - metabolism | Phthalic Acids - analysis | RNA, Ribosomal, 16S - genetics | Metabolites | RNA | Analysis | Esters | Bioremediation | Mass spectrometry | Chromatography | Microbiology | Biochemistry
biodegradation | pathway | GC–MS | phthalates | Rhizobium sp. LMB‐1 | Biodegradation | GC-MS | Pathway | Rhizobium sp. LMB-1 | Phthalates | BACTERIA | ACID | PLASTIC FILM | MICROBIOLOGY | RIVER | MICROBIAL-DEGRADATION | GENE | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | Rhizobium sp | LMB-1 | SOIL | STRAIN | EXPRESSION | Biodegradation, Environmental | Gas Chromatography-Mass Spectrometry | Esters - metabolism | Rhizobium - isolation & purification | Dibutyl Phthalate - metabolism | Rhizobium - genetics | Esters - analysis | Rhizobium - metabolism | Rhizobium - classification | Dibutyl Phthalate - analysis | Phthalic Acids - metabolism | Phthalic Acids - analysis | RNA, Ribosomal, 16S - genetics | Metabolites | RNA | Analysis | Esters | Bioremediation | Mass spectrometry | Chromatography | Microbiology | Biochemistry
Journal Article
FEMS Microbiology Ecology, ISSN 0168-6496, 01/2014, Volume 87, Issue 1, pp. 64 - 77
Abstract Lentil is the oldest of the crops that have been domesticated in the Fertile Crescent and spread to other regions during the Bronze Age, making it an...
lentil greges | recombination | rhizobia | legume | speciation | Lentil greges | Recombination | Rhizobia | Speciation | Legume | MULTILOCUS GENOTYPE DATA | EVOLUTIONARY GENETICS | ESCHERICHIA-COLI | MICROBIOLOGY | FRAGMENT-LENGTH-POLYMORPHISM | PHYLOGENETIC INFERENCE | BV-VICIAE | POPULATION-GENETICS | VICIA-FABA | DNA-SEQUENCE DATA | PHASEOLUS-VULGARIS | Lens Plant - physiology | Symbiosis | Lens Plant - microbiology | Europe | Root Nodules, Plant - microbiology | Molecular Sequence Data | Rhizobium - isolation & purification | Phylogeny | Rhizobium - physiology | Rhizobium leguminosarum - physiology | Rhizobium - genetics | Rhizobium leguminosarum - classification | Genetic Variation | Middle East | Bangladesh | Rhizobium - classification | Rhizobium leguminosarum - genetics | Rhizobium leguminosarum - isolation & purification | Legumes | Beans | Arab countries | RNA | Mimosaceae | Analysis
lentil greges | recombination | rhizobia | legume | speciation | Lentil greges | Recombination | Rhizobia | Speciation | Legume | MULTILOCUS GENOTYPE DATA | EVOLUTIONARY GENETICS | ESCHERICHIA-COLI | MICROBIOLOGY | FRAGMENT-LENGTH-POLYMORPHISM | PHYLOGENETIC INFERENCE | BV-VICIAE | POPULATION-GENETICS | VICIA-FABA | DNA-SEQUENCE DATA | PHASEOLUS-VULGARIS | Lens Plant - physiology | Symbiosis | Lens Plant - microbiology | Europe | Root Nodules, Plant - microbiology | Molecular Sequence Data | Rhizobium - isolation & purification | Phylogeny | Rhizobium - physiology | Rhizobium leguminosarum - physiology | Rhizobium - genetics | Rhizobium leguminosarum - classification | Genetic Variation | Middle East | Bangladesh | Rhizobium - classification | Rhizobium leguminosarum - genetics | Rhizobium leguminosarum - isolation & purification | Legumes | Beans | Arab countries | RNA | Mimosaceae | Analysis
Journal Article
Canadian Journal of Microbiology, ISSN 0008-4166, 12/2004, Volume 50, Issue 12, pp. 1023 - 1031
Until recently, beans (Phaseolus vulgaris L.) grown in Minnesota were rarely inoculated. Because of this, we hypothesized that bean rhizobia collected in...
Rhizobium diversity | Seed treatment | Phaseolus vulgaris | Taxonomy | STRAINS | BACTERIA | SOILS | TROPICI | PHASEOLUS-VULGARIS L | POPULATIONS | MICROBIOLOGY | taxonomy | seed treatment | LEGUMINOSARUM | TREES | ROOT-NODULES | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | DIVERSITY | Seeds | DNA Fingerprinting | Fatty Acids - isolation & purification | DNA, Bacterial - chemistry | Rhizobium - isolation & purification | Phylogeny | Rhizobium - physiology | Rhizobium leguminosarum - physiology | DNA, Ribosomal - chemistry | Rhizobium leguminosarum - classification | Sequence Homology | Rhizobium - classification | Polymerase Chain Reaction | Rhizobium leguminosarum - drug effects | Rhizobium tropici - drug effects | Phaseolus - microbiology | Captan - pharmacology | Rhizobium leguminosarum - isolation & purification | Fabaceae - microbiology | Rhizobium tropici - classification | Rhizobium tropici - isolation & purification | Rhizobium etli - physiology | DNA, Bacterial - isolation & purification | Streptomycin - pharmacology | DNA, Ribosomal - isolation & purification | Soil Microbiology | Rhizobium etli - drug effects | Fatty Acids - analysis | Minnesota | Rhizobium etli - isolation & purification | Sequence Analysis, DNA | Rhizobium tropici - physiology | DNA, Bacterial - genetics | Rhizobium etli - classification | RNA, Ribosomal, 16S - genetics | Anti-Bacterial Agents - pharmacology | Genes, rRNA | Rhizobium - drug effects | Beans | Microbiology | Prairies | Genetic diversity | Ribonucleic acid--RNA
Rhizobium diversity | Seed treatment | Phaseolus vulgaris | Taxonomy | STRAINS | BACTERIA | SOILS | TROPICI | PHASEOLUS-VULGARIS L | POPULATIONS | MICROBIOLOGY | taxonomy | seed treatment | LEGUMINOSARUM | TREES | ROOT-NODULES | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | DIVERSITY | Seeds | DNA Fingerprinting | Fatty Acids - isolation & purification | DNA, Bacterial - chemistry | Rhizobium - isolation & purification | Phylogeny | Rhizobium - physiology | Rhizobium leguminosarum - physiology | DNA, Ribosomal - chemistry | Rhizobium leguminosarum - classification | Sequence Homology | Rhizobium - classification | Polymerase Chain Reaction | Rhizobium leguminosarum - drug effects | Rhizobium tropici - drug effects | Phaseolus - microbiology | Captan - pharmacology | Rhizobium leguminosarum - isolation & purification | Fabaceae - microbiology | Rhizobium tropici - classification | Rhizobium tropici - isolation & purification | Rhizobium etli - physiology | DNA, Bacterial - isolation & purification | Streptomycin - pharmacology | DNA, Ribosomal - isolation & purification | Soil Microbiology | Rhizobium etli - drug effects | Fatty Acids - analysis | Minnesota | Rhizobium etli - isolation & purification | Sequence Analysis, DNA | Rhizobium tropici - physiology | DNA, Bacterial - genetics | Rhizobium etli - classification | RNA, Ribosomal, 16S - genetics | Anti-Bacterial Agents - pharmacology | Genes, rRNA | Rhizobium - drug effects | Beans | Microbiology | Prairies | Genetic diversity | Ribonucleic acid--RNA
Journal Article
Journal of Bacteriology, ISSN 0021-9193, 10/2010, Volume 192, Issue 19, pp. 5124 - 5133
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
HISTIDINE KINASES | AGROBACTERIUM-TUMEFACIENS | BACTERIOPHYTOCHROME | EVOLUTION | CHROMOPHORE | PHOTORECEPTOR | IN-VIVO | LIGHT | PHOTOACTIVE YELLOW PROTEIN | PHOTOCONVERSION | MICROBIOLOGY | Xanthobacter - metabolism | Phytochrome - classification | Rhizobium leguminosarum - metabolism | Bacterial Proteins - genetics | Computational Biology | Agrobacterium tumefaciens - genetics | Azorhizobium caulinodans - genetics | Phylogeny | Azorhizobium caulinodans - metabolism | Rhizobium - genetics | Rhizobium etli - metabolism | Rhizobium - metabolism | Xanthobacter - genetics | Rhizobium etli - genetics | Agrobacterium tumefaciens - metabolism | Phytochrome - metabolism | Bacterial Proteins - metabolism | Phytochrome - genetics | Rhizobium leguminosarum - genetics | Physiological aspects | Rhizobium | Genetic aspects | Research | Soil microbiology | Phytochrome | Enzymes and Proteins
HISTIDINE KINASES | AGROBACTERIUM-TUMEFACIENS | BACTERIOPHYTOCHROME | EVOLUTION | CHROMOPHORE | PHOTORECEPTOR | IN-VIVO | LIGHT | PHOTOACTIVE YELLOW PROTEIN | PHOTOCONVERSION | MICROBIOLOGY | Xanthobacter - metabolism | Phytochrome - classification | Rhizobium leguminosarum - metabolism | Bacterial Proteins - genetics | Computational Biology | Agrobacterium tumefaciens - genetics | Azorhizobium caulinodans - genetics | Phylogeny | Azorhizobium caulinodans - metabolism | Rhizobium - genetics | Rhizobium etli - metabolism | Rhizobium - metabolism | Xanthobacter - genetics | Rhizobium etli - genetics | Agrobacterium tumefaciens - metabolism | Phytochrome - metabolism | Bacterial Proteins - metabolism | Phytochrome - genetics | Rhizobium leguminosarum - genetics | Physiological aspects | Rhizobium | Genetic aspects | Research | Soil microbiology | Phytochrome | Enzymes and Proteins
Journal Article
International Journal of Systematic and Evolutionary Microbiology, ISSN 1466-5026, 02/2017, Volume 67, Issue 2, pp. 516 - 520
Journal Article
Journal of the American Chemical Society, ISSN 0002-7863, 07/2015, Volume 137, Issue 28, pp. 9061 - 9076
It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct...
SULFATASE ACTIVITY | CATALYTIC PROMISCUITY | NUCLEOTIDE PYROPHOSPHATASE/PHOSPHODIESTERASE | PHOSPHORYL-TRANSFER | ENZYME PROMISCUITY | ACTIVE-SITE | PSEUDOMONAS-AERUGINOSA | FREE-ENERGY RELATIONSHIPS | MOLECULAR SIMULATIONS | TRANSITION-STATE | CHEMISTRY, MULTIDISCIPLINARY | Burkholderia - genetics | Catalytic Domain | Alkaline Phosphatase - genetics | Rhizobium leguminosarum - metabolism | Alkaline Phosphatase - metabolism | Models, Molecular | Substrate Specificity | Rhizobium leguminosarum - enzymology | Static Electricity | Burkholderia - chemistry | Quantum Theory | Burkholderia - metabolism | Burkholderia - enzymology | Models, Biological | Computer Simulation | Alkaline Phosphatase - chemistry | Rhizobium leguminosarum - chemistry | Protein Conformation | Mutation | Rhizobium leguminosarum - genetics | Evolution, Molecular | Hydrogen-Ion Concentration | Alkaline phosphatase | Microbial enzymes | Chemical properties | Research | Binding sites (Biochemistry) | Biological Sciences | Biochemistry and Molecular Biology | Naturvetenskap | Natural Sciences | Biokemi och molekylärbiologi | Biologiska vetenskaper
SULFATASE ACTIVITY | CATALYTIC PROMISCUITY | NUCLEOTIDE PYROPHOSPHATASE/PHOSPHODIESTERASE | PHOSPHORYL-TRANSFER | ENZYME PROMISCUITY | ACTIVE-SITE | PSEUDOMONAS-AERUGINOSA | FREE-ENERGY RELATIONSHIPS | MOLECULAR SIMULATIONS | TRANSITION-STATE | CHEMISTRY, MULTIDISCIPLINARY | Burkholderia - genetics | Catalytic Domain | Alkaline Phosphatase - genetics | Rhizobium leguminosarum - metabolism | Alkaline Phosphatase - metabolism | Models, Molecular | Substrate Specificity | Rhizobium leguminosarum - enzymology | Static Electricity | Burkholderia - chemistry | Quantum Theory | Burkholderia - metabolism | Burkholderia - enzymology | Models, Biological | Computer Simulation | Alkaline Phosphatase - chemistry | Rhizobium leguminosarum - chemistry | Protein Conformation | Mutation | Rhizobium leguminosarum - genetics | Evolution, Molecular | Hydrogen-Ion Concentration | Alkaline phosphatase | Microbial enzymes | Chemical properties | Research | Binding sites (Biochemistry) | Biological Sciences | Biochemistry and Molecular Biology | Naturvetenskap | Natural Sciences | Biokemi och molekylärbiologi | Biologiska vetenskaper
Journal Article
The New Phytologist, ISSN 0028-646X, 11/2010, Volume 188, Issue 3, pp. 814 - 823
Legume-rhizobium symbiosis requires a complex dialogue based on the exchange of diffusible signals between the partners. Compatible rhizobia express key...
Symbiosis | Legumes | Molecules | Flavonoids | Plasmids | Genes | Nodulation | Rhizobium | Plants | Rhizobium leguminosarum | legume–rhizobium symbiosis | NodD | flavonoids | calcium signalling | aequorin | Rhizobium leguminosarum bv. viciae | Calcium signalling | Aequorin | Legume-rhizobium symbiosis | NOD GENE-EXPRESSION | BIOVAR VICIAE | STIMULATE | INDUCTION | IDENTIFICATION | Rhizobium leguminosarum bv | viciae | PLANT SCIENCES | NODULATION | PERCEPTION | CA2 | NARINGENIN | MUTATIONS | legume-rhizobium symbiosis | Genes, Bacterial | Calcium - metabolism | Calcium Signaling - physiology | Rhizobium leguminosarum - metabolism | Transcriptional Activation | Bacterial Proteins - genetics | Symbiosis - physiology | Transcription Factors - genetics | Transcription Factors - metabolism | Vicia sativa - metabolism | Bacterial Proteins - metabolism | Signal Transduction - physiology | Calcium Signaling - genetics | Gene Expression Regulation, Bacterial | Flavonoids - physiology | Rhizobium leguminosarum - genetics | Beans | Anopheles | Mimosaceae | Musicians | Isoflavones
Symbiosis | Legumes | Molecules | Flavonoids | Plasmids | Genes | Nodulation | Rhizobium | Plants | Rhizobium leguminosarum | legume–rhizobium symbiosis | NodD | flavonoids | calcium signalling | aequorin | Rhizobium leguminosarum bv. viciae | Calcium signalling | Aequorin | Legume-rhizobium symbiosis | NOD GENE-EXPRESSION | BIOVAR VICIAE | STIMULATE | INDUCTION | IDENTIFICATION | Rhizobium leguminosarum bv | viciae | PLANT SCIENCES | NODULATION | PERCEPTION | CA2 | NARINGENIN | MUTATIONS | legume-rhizobium symbiosis | Genes, Bacterial | Calcium - metabolism | Calcium Signaling - physiology | Rhizobium leguminosarum - metabolism | Transcriptional Activation | Bacterial Proteins - genetics | Symbiosis - physiology | Transcription Factors - genetics | Transcription Factors - metabolism | Vicia sativa - metabolism | Bacterial Proteins - metabolism | Signal Transduction - physiology | Calcium Signaling - genetics | Gene Expression Regulation, Bacterial | Flavonoids - physiology | Rhizobium leguminosarum - genetics | Beans | Anopheles | Mimosaceae | Musicians | Isoflavones
Journal Article
FEMS Microbiology Letters, ISSN 0378-1097, 02/2016, Volume 363, Issue 5, p. fnw024
The phylogenetic diversity of 29 rhizobial strains nodulating Phaseolus vulgaris in Iran was analysed on the basis of their core and symbiotic genes. These...
Housekeeping genes | Rhizobium | Iran | Phaseolus vulgaris | Pararhizobium | Symbiotic genes | N-2-FIXING SYMBIONT | STRAINS | SOILS | EVOLUTIONARY GENETICS | SEQUENCES | POPULATIONS | MICROBIOLOGY | SP NOV | NODULES | symbiotic genes | RIBOSOMAL-RNA GENE | housekeeping genes | Symbiosis | Rhizobium leguminosarum - growth & development | Membrane Proteins - genetics | Soil Microbiology | Bacterial Proteins - genetics | Root Nodules, Plant - microbiology | N-Acetylglucosaminyltransferases - genetics | Rhizobium tropici - genetics | Phylogeny | Sequence Analysis, DNA | Rhizobium leguminosarum - classification | DNA, Bacterial - genetics | Polymorphism, Restriction Fragment Length | Base Sequence | RNA, Ribosomal, 16S - genetics | Phaseolus - microbiology | Rhizobium tropici - growth & development | Rec A Recombinases - genetics | Rhizobium leguminosarum - genetics | Rhizobium tropici - classification
Housekeeping genes | Rhizobium | Iran | Phaseolus vulgaris | Pararhizobium | Symbiotic genes | N-2-FIXING SYMBIONT | STRAINS | SOILS | EVOLUTIONARY GENETICS | SEQUENCES | POPULATIONS | MICROBIOLOGY | SP NOV | NODULES | symbiotic genes | RIBOSOMAL-RNA GENE | housekeeping genes | Symbiosis | Rhizobium leguminosarum - growth & development | Membrane Proteins - genetics | Soil Microbiology | Bacterial Proteins - genetics | Root Nodules, Plant - microbiology | N-Acetylglucosaminyltransferases - genetics | Rhizobium tropici - genetics | Phylogeny | Sequence Analysis, DNA | Rhizobium leguminosarum - classification | DNA, Bacterial - genetics | Polymorphism, Restriction Fragment Length | Base Sequence | RNA, Ribosomal, 16S - genetics | Phaseolus - microbiology | Rhizobium tropici - growth & development | Rec A Recombinases - genetics | Rhizobium leguminosarum - genetics | Rhizobium tropici - classification
Journal Article
Book
BMC Genomics, ISSN 1471-2164, 01/2017, Volume 18, Issue 1, p. 85
Background: Nitrogen fixing bacteria isolated from hot arid areas in Asia, Africa and America but from diverse leguminous plants have been recently identified...
Comparative genomics | Desert | Ensifer | Rhizobium- legume symbiosis | Adaptation | SINORHIZOBIUM-MELILOTI | ACCESSORY GENOMES | IDENTIFICATION | LEGUMINOSARUM | INDIAN THAR DESERT | Rhizobium-legume symbiosis | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | MALONATE METABOLISM | GENETICS & HEREDITY | ROOT-NODULE-BACTERIA | SP-NOV | INSERTION SEQUENCES | SUBSYSTEMS TECHNOLOGY | Americas | Computational Biology - methods | Molecular Sequence Annotation | Africa | Synteny | Genome, Plant | Phylogeny | Rhizobium - genetics | Symbiosis - genetics | Rhizobium - metabolism | Nitrogen Fixation - genetics | Phenotype | Rhizobium - classification | Asia | High-Throughput Nucleotide Sequencing | Desert Climate | Genomics - methods | Evolution, Molecular | Rhizobium | Genetic aspects | Identification and classification | Natural history | Biodiversity and Ecology | Environmental Sciences
Comparative genomics | Desert | Ensifer | Rhizobium- legume symbiosis | Adaptation | SINORHIZOBIUM-MELILOTI | ACCESSORY GENOMES | IDENTIFICATION | LEGUMINOSARUM | INDIAN THAR DESERT | Rhizobium-legume symbiosis | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | MALONATE METABOLISM | GENETICS & HEREDITY | ROOT-NODULE-BACTERIA | SP-NOV | INSERTION SEQUENCES | SUBSYSTEMS TECHNOLOGY | Americas | Computational Biology - methods | Molecular Sequence Annotation | Africa | Synteny | Genome, Plant | Phylogeny | Rhizobium - genetics | Symbiosis - genetics | Rhizobium - metabolism | Nitrogen Fixation - genetics | Phenotype | Rhizobium - classification | Asia | High-Throughput Nucleotide Sequencing | Desert Climate | Genomics - methods | Evolution, Molecular | Rhizobium | Genetic aspects | Identification and classification | Natural history | Biodiversity and Ecology | Environmental Sciences
Journal Article
Systematic and Applied Microbiology, ISSN 0723-2020, 03/2018, Volume 41, Issue 2, pp. 122 - 130
Fifty-eight rhizobial strains were isolated from root nodules of cv. Equina and cv. Minor by the host-trapping method in soils collected from eleven sites in...
Housekeeping genes | Rhizobium | Algeria | Vicia faba | Diversity | STRAINS | EVOLUTIONARY GENETICS | BIOVAR VICIAE | POPULATIONS | MICROBIOLOGY | SP NOV | SYMBIOTIC EFFECTIVENESS | GENETIC DIVERSITY | SEMIARID REGIONS | MULTILOCUS SEQUENCE-ANALYSIS | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | PHASEOLUS-VULGARIS | Symbiosis | Genes, Bacterial | Root Nodules, Plant - microbiology | Rhizobium - isolation & purification | Phylogeny | Multilocus Sequence Typing | Sequence Analysis, DNA | Rhizobium - genetics | Rhizobium leguminosarum - classification | Rhizobium - classification | DNA, Bacterial - genetics | DNA, Ribosomal Spacer - genetics | Polymorphism, Restriction Fragment Length | RNA, Ribosomal, 16S - genetics | Rhizobium leguminosarum - genetics | Rhizobium leguminosarum - isolation & purification | Vicia faba - microbiology
Housekeeping genes | Rhizobium | Algeria | Vicia faba | Diversity | STRAINS | EVOLUTIONARY GENETICS | BIOVAR VICIAE | POPULATIONS | MICROBIOLOGY | SP NOV | SYMBIOTIC EFFECTIVENESS | GENETIC DIVERSITY | SEMIARID REGIONS | MULTILOCUS SEQUENCE-ANALYSIS | BIOTECHNOLOGY & APPLIED MICROBIOLOGY | PHASEOLUS-VULGARIS | Symbiosis | Genes, Bacterial | Root Nodules, Plant - microbiology | Rhizobium - isolation & purification | Phylogeny | Multilocus Sequence Typing | Sequence Analysis, DNA | Rhizobium - genetics | Rhizobium leguminosarum - classification | Rhizobium - classification | DNA, Bacterial - genetics | DNA, Ribosomal Spacer - genetics | Polymorphism, Restriction Fragment Length | RNA, Ribosomal, 16S - genetics | Rhizobium leguminosarum - genetics | Rhizobium leguminosarum - isolation & purification | Vicia faba - microbiology
Journal Article
Trends in Microbiology, ISSN 0966-842X, 2015, Volume 24, Issue 1, pp. 63 - 75
Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes...
Internal Medicine | host adaptation | Rhizobium | evolution | horizontal gene transfer | symbiosis | Symbiosis | Evolution | Host adaptation | Horizontal gene transfer | SEQUENCE-ANALYSIS | SINORHIZOBIUM-MELILOTI | COMPARATIVE GENOMICS | MESORHIZOBIUM-LOTI | EXPERIMENTAL EVOLUTION | BIOCHEMISTRY & MOLECULAR BIOLOGY | BACTERIAL SYMBIOSIS | NODULATING STRAINS | ESCHERICHIA-COLI | RHIZOBIUM MUTUALISM | MICROBIOLOGY | ALPHA-PROTEOBACTERIA | Genes, Bacterial | Nitrogen - metabolism | Soil Microbiology | Symbiosis - physiology | Phylogeny | Alphaproteobacteria - physiology | Rhizobium - physiology | Rhizobium - genetics | Symbiosis - genetics | Biological Evolution | Nitrogen Fixation - physiology | Alphaproteobacteria - genetics | Fabaceae - genetics | Fabaceae - physiology | Evolution, Molecular | Fabaceae - microbiology | Legumes | Beans | Fixation | Nitrogen | Mimosaceae | Soil microbiology
Internal Medicine | host adaptation | Rhizobium | evolution | horizontal gene transfer | symbiosis | Symbiosis | Evolution | Host adaptation | Horizontal gene transfer | SEQUENCE-ANALYSIS | SINORHIZOBIUM-MELILOTI | COMPARATIVE GENOMICS | MESORHIZOBIUM-LOTI | EXPERIMENTAL EVOLUTION | BIOCHEMISTRY & MOLECULAR BIOLOGY | BACTERIAL SYMBIOSIS | NODULATING STRAINS | ESCHERICHIA-COLI | RHIZOBIUM MUTUALISM | MICROBIOLOGY | ALPHA-PROTEOBACTERIA | Genes, Bacterial | Nitrogen - metabolism | Soil Microbiology | Symbiosis - physiology | Phylogeny | Alphaproteobacteria - physiology | Rhizobium - physiology | Rhizobium - genetics | Symbiosis - genetics | Biological Evolution | Nitrogen Fixation - physiology | Alphaproteobacteria - genetics | Fabaceae - genetics | Fabaceae - physiology | Evolution, Molecular | Fabaceae - microbiology | Legumes | Beans | Fixation | Nitrogen | Mimosaceae | Soil microbiology
Journal Article