Results in Mathematics, ISSN 1422-6383, 12/2019, Volume 74, Issue 4, pp. 1 - 16

In this paper, we realize polynomial $$\mathcal {H}$$ H -modules $$\Omega (\lambda ,\alpha ,\beta )$$ Ω(λ,α,β) from irreducible twisted Heisenberg–Virasoro...

17B68 | tensor product module | 17B10 | 17B65 | Mathematics, general | Mathematics | Twisted Heisenberg–Virasoro algebra | irreducible module | Twisted Heisenberg-Virasoro algebra | MATHEMATICS | MATHEMATICS, APPLIED | WEIGHT MODULES | CLASSIFICATION | Algebra

17B68 | tensor product module | 17B10 | 17B65 | Mathematics, general | Mathematics | Twisted Heisenberg–Virasoro algebra | irreducible module | Twisted Heisenberg-Virasoro algebra | MATHEMATICS | MATHEMATICS, APPLIED | WEIGHT MODULES | CLASSIFICATION | Algebra

Journal Article

Communications in Algebra, ISSN 0092-7872, 06/2018, Volume 46, Issue 6, pp. 2346 - 2355

In this paper, the biderivations without the skew-symmetric condition of the twisted Heisenberg-Virasoro algebra are presented. We find some non-inner and...

post-Lie algebra | twisted Heisenberg-Virasoro algebra | Biderivation | linear commuting maps | left-symmetric algebra | twisted Heisenberg–Virasoro algebra | MATHEMATICS | W(A | LIE-ALGEBRA | SUPER-BIDERIVATIONS | Quantum theory | Algebra | Lie groups

post-Lie algebra | twisted Heisenberg-Virasoro algebra | Biderivation | linear commuting maps | left-symmetric algebra | twisted Heisenberg–Virasoro algebra | MATHEMATICS | W(A | LIE-ALGEBRA | SUPER-BIDERIVATIONS | Quantum theory | Algebra | Lie groups

Journal Article

GLASNIK MATEMATICKI, ISSN 0017-095X, 12/2019, Volume 54, Issue 2, pp. 369 - 407

In this paper, we study a new kind of vertex operator algebras related to twisted Heisenberg-Virasoro algebra. We showed that there exist one-to-one...

LIE-ALGEBRAS | MATHEMATICS | vertex operator algebra | MATHEMATICS, APPLIED | REPRESENTATIONS | REGULARITY | AFFINE | Twisted Heisenber-Virasoro algebia | modules | RATIONALITY | Twisted Heisenberg-Virasoro algebra, vertex operator algebra, modules

LIE-ALGEBRAS | MATHEMATICS | vertex operator algebra | MATHEMATICS, APPLIED | REPRESENTATIONS | REGULARITY | AFFINE | Twisted Heisenber-Virasoro algebia | modules | RATIONALITY | Twisted Heisenberg-Virasoro algebra, vertex operator algebra, modules

Journal Article

4.
Full Text
CLASSIFICATION OF IRREDUCIBLE WEIGHT MODULES OVER THE TWISTED HEISENBERG–VIRASORO ALGEBRA

Communications in Contemporary Mathematics, ISSN 0219-1997, 04/2010, Volume 12, Issue 2, pp. 183 - 205

In this paper, all irreducible weight modules with finite dimensional weight spaces over the twisted Heisenberg–Virasoro algebra are determined. There are two...

MATHEMATICS | MATHEMATICS, APPLIED | Virasoro algebra | weight module | twisted Heisenberg-Virasoro algebra | HARISH-CHANDRA MODULES | LIE-ALGEBRA | ADMISSIBLE MODULES | Algebra | Mathematical analysis | Modules | Classification

MATHEMATICS | MATHEMATICS, APPLIED | Virasoro algebra | weight module | twisted Heisenberg-Virasoro algebra | HARISH-CHANDRA MODULES | LIE-ALGEBRA | ADMISSIBLE MODULES | Algebra | Mathematical analysis | Modules | Classification

Journal Article

Journal of Algebra, ISSN 0021-8693, 06/2012, Volume 359, pp. 35 - 48

In this paper we investigate Lie bialgebra structures on the twisted Heisenberg–Virasoro algebra. With the determination of certain Lie bialgebra structures on...

Yang–Baxter equation | Lie bialgebra | Twisted Heisenberg–Virasoro algebra | Twisted Heisenberg-Virasoro algebra | Yang-Baxter equation | MATHEMATICS | CLASSIFICATION | WITT | Algebra

Yang–Baxter equation | Lie bialgebra | Twisted Heisenberg–Virasoro algebra | Twisted Heisenberg-Virasoro algebra | Yang-Baxter equation | MATHEMATICS | CLASSIFICATION | WITT | Algebra

Journal Article

中国科学：数学英文版, ISSN 1674-7283, 2014, Volume 57, Issue 3, pp. 469 - 476

The compatible left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra with some natural grading conditions are completely determined. The...

Virasoro代数 | 无限维 | 海森堡 | 子代数 | 代数结构 | 左对称代数 | 17B68 | left-symmetric algebra | Virasoro algebra | 17B65 | twisted Heisenberg-Virasoro algebra | Mathematics | Applications of Mathematics | 17D25 | Twisted Heisenberg-Virasoro algebra | Left-symmetric algebra | MATHEMATICS | MATHEMATICS, APPLIED | LIE-GROUPS | SPACES | CLASSIFICATION | GEOMETRY | Algebra | Grading | Compatibility | Mathematical analysis | Modules | China

Virasoro代数 | 无限维 | 海森堡 | 子代数 | 代数结构 | 左对称代数 | 17B68 | left-symmetric algebra | Virasoro algebra | 17B65 | twisted Heisenberg-Virasoro algebra | Mathematics | Applications of Mathematics | 17D25 | Twisted Heisenberg-Virasoro algebra | Left-symmetric algebra | MATHEMATICS | MATHEMATICS, APPLIED | LIE-GROUPS | SPACES | CLASSIFICATION | GEOMETRY | Algebra | Grading | Compatibility | Mathematical analysis | Modules | China

Journal Article

Journal of Nonlinear Mathematical Physics, ISSN 1402-9251, 10/2014, Volume 21, Issue 4, pp. 584 - 592

In this paper, we first construct an analogue of the Sugawara operators for the twisted Heisenberg-Virasoro algebra. By using these operators, we show that...

Twisted Heisenberg-Virasoro algebra | Sugawara operators | unitary representations | affine Lie algebras | Affine Lie algebras | Unitary representations | MATHEMATICS, APPLIED | 17B68 | CONFORMAL-INVARIANCE | 17B65 | PHYSICS, MATHEMATICAL

Twisted Heisenberg-Virasoro algebra | Sugawara operators | unitary representations | affine Lie algebras | Affine Lie algebras | Unitary representations | MATHEMATICS, APPLIED | 17B68 | CONFORMAL-INVARIANCE | 17B65 | PHYSICS, MATHEMATICAL

Journal Article

Communications in Algebra, ISSN 0092-7872, 02/2020, pp. 1 - 10

Journal Article

ALGEBRA COLLOQUIUM, ISSN 1005-3867, 09/2019, Volume 26, Issue 3, pp. 529 - 540

The conjugate-linear anti-involutions and unitary irreducible modules of the intermediate series over the twisted Heisenberg-Virasoro algebra are classified,...

SPACE | MATHEMATICS | MATHEMATICS, APPLIED | IRREDUCIBLE WEIGHT MODULES | REPRESENTATIONS | twisted Heisenberg-Virasoro algebra | CLASSIFICATION | Harish-Chandra module | conjugate-linear anti-involution | unitary module

SPACE | MATHEMATICS | MATHEMATICS, APPLIED | IRREDUCIBLE WEIGHT MODULES | REPRESENTATIONS | twisted Heisenberg-Virasoro algebra | CLASSIFICATION | Harish-Chandra module | conjugate-linear anti-involution | unitary module

Journal Article

Acta Mathematica Sinica, English Series, ISSN 1439-8516, 1/2007, Volume 23, Issue 1, pp. 189 - 192

We show that the support of an irreducible weight module over the twisted Heisenberg– Virasoro algebra, which has an infinite–dimensional weight space,...

17B56 | 17B68 | the twisted Heisenberg–Virasoro algebra | Mathematics, general | Mathematics | weight modules | support | Support | Weight modules | The twisted Heisenberg-Virasoro algebra | MATHEMATICS | MATHEMATICS, APPLIED | REPRESENTATIONS | the twisted Heisenberg-Virasoro algebra | Studies | Mathematical functions | Algebra | Lattices | Modules | Classification

17B56 | 17B68 | the twisted Heisenberg–Virasoro algebra | Mathematics, general | Mathematics | weight modules | support | Support | Weight modules | The twisted Heisenberg-Virasoro algebra | MATHEMATICS | MATHEMATICS, APPLIED | REPRESENTATIONS | the twisted Heisenberg-Virasoro algebra | Studies | Mathematical functions | Algebra | Lattices | Modules | Classification

Journal Article

Algebra Colloquium, ISSN 1005-3867, 03/2007, Volume 14, Issue 1, pp. 117 - 134

An explicit construction of indecomposable modules for the twisted Heisenberg-Virasoro algebra and representations for the full toroidal Lie algebras are given.

Twisted Heisenberg-Virasoro algebra | Toroidal Lie algebra | Irreducible module | toroidal Lie algebra | MATHEMATICS | MATHEMATICS, APPLIED | VERTEX OPERATOR REPRESENTATIONS | BASIC REPRESENTATIONS | twisted Heisenberg-Virasoro algebra | IRREDUCIBLE REPRESENTATIONS | irreducible module

Twisted Heisenberg-Virasoro algebra | Toroidal Lie algebra | Irreducible module | toroidal Lie algebra | MATHEMATICS | MATHEMATICS, APPLIED | VERTEX OPERATOR REPRESENTATIONS | BASIC REPRESENTATIONS | twisted Heisenberg-Virasoro algebra | IRREDUCIBLE REPRESENTATIONS | irreducible module

Journal Article

Acta Mathematica Sinica, Chinese Series, ISSN 0583-1431, 11/2016, Volume 59, Issue 6, pp. 775 - 782

Journal Article

13.
Full Text
The Derivation Algebra and Automorphism Group of the Twisted Heisenberg-Virasoro Algebra

Communications in Algebra, ISSN 0092-7872, 08/2006, Volume 34, Issue 7, pp. 2547 - 2558

In this article, we give the derivation algebra Der ℒ and the automorphism group Aut ℒ of the twisted Heisenberg-Virasoro algebra ℒ.

Twisted Heisenberg-Virasoro algebra | Derivation algebra | Automorphism group | 17B | MATHEMATICS | twisted Heisenberg-Virasoro algebra | automorphism group | derivation algebra

Twisted Heisenberg-Virasoro algebra | Derivation algebra | Automorphism group | 17B | MATHEMATICS | twisted Heisenberg-Virasoro algebra | automorphism group | derivation algebra

Journal Article

ALGEBRA COLLOQUIUM, ISSN 1005-3867, 06/2019, Volume 26, Issue 2, pp. 285 - 308

In this paper, we mainly determine the compatible left-symmetric algebra structures on the planar Galilean conformal algebra with some natural grading...

MATHEMATICS | twisted Heisenberg-Virasoro algebra | MATHEMATICS, APPLIED | WITT | left-symmetric algebra | planar Galilean conformal algebra

MATHEMATICS | twisted Heisenberg-Virasoro algebra | MATHEMATICS, APPLIED | WITT | left-symmetric algebra | planar Galilean conformal algebra

Journal Article

Journal of Applied Analysis, ISSN 1425-6908, 12/2005, Volume 11, Issue 2, pp. 261 - 282

Journal Article

16.
Full Text
Classification of irreducible weight modules over the twisted heisenbergvirasoro algebra

Communications in Contemporary Mathematics, ISSN 0219-1997, 04/2010, Volume 12, Issue 2, pp. 183 - 205

Journal Article

Frontiers of Mathematics in China, ISSN 1673-3452, 10/2009, Volume 4, Issue 4, pp. 627 - 635

In this paper, we obtain all the Leibniz 2-cocycles of the twisted N = 2 superconformal algebra L, which determine its second Leibniz cohomology group.

Twisted N = 2 superconformal algebra | Leibniz 2-cocycle | LIE-ALGEBRAS | MATHEMATICS | Twisted N=2 superconformal algebra | CENTRAL EXTENSIONS | Studies | Mathematical analysis | Algebra

Twisted N = 2 superconformal algebra | Leibniz 2-cocycle | LIE-ALGEBRAS | MATHEMATICS | Twisted N=2 superconformal algebra | CENTRAL EXTENSIONS | Studies | Mathematical analysis | Algebra

Journal Article

No results were found for your search.

Cannot display more than 1000 results, please narrow the terms of your search.